In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1-ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the 'ribosome puzzle', namely the detailed molecular insight into the topology of the S1-ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288201 | PMC |
http://dx.doi.org/10.1093/nar/gku1314 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.
Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.
Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Obstetrics and Gynecology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India.
Int J Biol Macromol
January 2025
School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China. Electronic address:
In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!