The skin surface is colonized by a wide variety of fungi and bacteria. While many of these organisms, including Malassezia, Candida, Streptococcus and Staphylococcus species, are associated with provocation and/or exacerbation of psoriasis, a detailed analysis of the cutaneous fungal microbiome in psoriatic patients has yet to be performed. To identify the disease-specific fungal microbiota on psoriatic scale samples, fungal rRNA gene sequences from 12 psoriatic patients and 12 healthy controls were analyzed by pyrosequencing. A total of 317 806 high-quality sequences were obtained, representing 142 genera. Malassezia species were the most abundant sequences in both populations (46.9 ± 14.0% in psoriasis vs. 76.0 ± 14.6% for healthy controls). Principal coordinate analysis revealed that the fungal microbiomes were independent. Although an association between the cutaneous fungal microbiome and psoriasis has yet to be established, our data indicate that the microbiome in patients with psoriasis is independent of that in healthy controls.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1346-8138.12739DOI Listing

Publication Analysis

Top Keywords

fungal microbiome
12
healthy controls
12
microbiome patients
8
patients psoriasis
8
cutaneous fungal
8
psoriatic patients
8
fungal
6
psoriasis
5
molecular characterization
4
characterization skin
4

Similar Publications

Background: Postharvest lemons are affected by several fungal infections, and as alternatives to chemical fungicides for combating these infections, different microbial biocontrol agents have been studied, with the Clavispora lusitaniae 146 strain standing out. Although strain 146 has proven to be an effective agent, the influence of a microbial biological control agent on the postharvest lemon microbiome has not been studied until now. Thus, this study aimed to evaluate how the epiphytic microbiome of postharvest lemons is affected by the application of the biocontrol yeast C.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

Background: We explored the interaction between the oral microbiome and the development of radiation-induced mucositis in patients with head and neck squamous cell cancer (HNSCC) undergoing chemoradiotherapy (CRT). We prospectively studied the oral microbiome and compared it to healthy controls. Additionally, we compared patients with low-grade (LGM) vs.

View Article and Find Full Text PDF

Background: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!