Background: The four-herb Chinese medicine PHY906(KD018) has been shown to both enhance the in vivo antitumor activity of irinotecan (CPT-11) against colon cancer tumor allografts and alleviate intestinal toxicity caused by CPT-11.
Methods: Since intestinal bacteria can metabolize CPT-11 and PHY906, we investigated whether intestinal bacteria play a critical role in the in vivo activity of PHY906 in murine Colon-38 tumor-bearing mice. Intestinal bacteria were depleted using streptomycin/neomycin for 10 days before and during treatment with PHY906 and/or CPT-11. qPCR using 16S DNA group-specific primers was used to quantify the levels of the major intestinal bacteria.
Results: Both PHY906 and antibiotic treatment changed the profile of intestinal bacteria species: Lactobacillus/Enterococcus, Bacteroides, Clostridium leptum, and E. rectale/C. coccoides. Antibiotic treatment did not alter the ability of PHY906 to enhance the antitumor activity of CPT-11. Antibiotic treatment alone partially reduced animal body weight loss in CPT-11-treated mice. However, PHY906 treatment was able to protect against the body weight loss in the CPT-11/antibiotic treatment group. H&E and PCNA staining of intestine showed that antibiotic treatment partially reduced the intestinal damage caused by CPT-11 but not as effectively as PHY906 treatment. Antibiotic treatment plus PHY906 conferred the most effective protection of intestine histological structure against damage by CPT-11. Both PHY906 and antibiotic treatment inhibited CPT-11-associated inflammatory processes, including infiltration of the intestine by neutrophils, MCP1 and TNF-alpha mRNA expression in the intestine, and expression of pro-inflammatory cytokines G-CSF and MCP1 proteins in the plasma. However, whereas antibiotic treatment suppressed the mRNA expression of two important intestinal progenitor/stem cell markers, Olfm4 and Lgr5, PHY906 treatment resulted in enhanced expression of these two stem cell markers.
Conclusions: Alterations in the population of intestinal bacteria did not affect the abilities of PHY906 to enhance CPT-11 antitumor activity or reduce the intestinal toxicity associated with CPT-11 treatment. The major species of intestinal bacteria do not appear to play a role in PHY906's enhancement of the therapeutic index of CPT-11 in tumor-bearing mice. Thus, patients with different intestinal bacterial profiles may still benefit from PHY906 treatment alongside CPT-11.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302098 | PMC |
http://dx.doi.org/10.1186/1472-6882-14-490 | DOI Listing |
Food Sci Anim Resour
January 2025
Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China.
Microalgae have garnered a considerable attention as a sustainable substitute as customary feed ingredients for poultry, predominantly due to their extraordinary nutritive profile and purposeful properties. These minuscule organisms are protein rich, retain an ample quantity of essential fatty acids, vitamins, minerals, and antioxidants, thus are capable of improving nutritive value of poultry diets. Microalgae comparatively delivers an outstanding source of protein containing substantial amount of innumerable bioactive complexes, omega-3 fatty acids in addition to the essential amino acids (methionine and lysine), crucial for optimal growth and development.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School of Pharmacy, Xinjiang Medical University, Urumchi, China.
Background: In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM).
Methods: T2DM was induced in Wistar rats using streptozotocin.
Front Immunol
January 2025
Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea.
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!