Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice.

Behav Brain Res

Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Calwer Street 3, D-72076 Tuebingen, Germany. Electronic address:

Published: March 2015

In addition to cognitive impairments, deficits in non-cognitive behaviors are also common neurological sequelae in Alzheimer's disease and its animal models. Hesperidin, a flavanone glycoside found abundantly in citrus fruits, was orally given (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, a mouse model of cerebral amyloidosis for Alzheimer's disease. After a relatively short-term treatment of 10 days, hesperidin significantly restored deficits in non-cognitive nesting ability and social interaction. Further immunohistochemical analysis showed significantly attenuated β-amyloid deposition, plaque associated APP expression, microglial activation and TGF-β immunoreactivity in brains of APP/PS1 mice, which suggests that ameliorated behavioral impairments might be attributable to reduced Aβ deposition and attenuated neuro-inflammatory reaction. Additionally, efficient anti-inflammatory effects of hesperidin were confirmed in vitro. Our findings suggest that hesperidin might be a potential candidate for the treatment of AD or even other neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2014.12.012DOI Listing

Publication Analysis

Top Keywords

app/ps1 mice
12
behavioral impairments
8
transgenic app/ps1
8
deficits non-cognitive
8
alzheimer's disease
8
hesperidin
5
hesperidin ameliorates
4
ameliorates behavioral
4
impairments neuropathology
4
neuropathology transgenic
4

Similar Publications

SIRT2 and ALDH1A1 as critical enzymes for astrocytic GABA production in Alzheimer's disease.

Mol Neurodegener

January 2025

Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.

Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.

View Article and Find Full Text PDF

Background: One of the hallmark pathological characteristics of Alzheimer's disease (AD) is amyloid-β (Aβ) accumulated in brain, which is mainly derived from the proteolytic processing of amyloid-β protein precursor (AβPP). The ubiquitin-proteasome system is able to reduce Aβ generation by ubiquitination and degradation of AβPP. Icariin (ICA), a flavonoid isolated from Maxim.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.

Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!