The distribution of bone marrow stromal cells (BMSC) is studied in a 3D poly(L,L-lactide) scaffolds. It is shown that the population of cells seeding into the scaffold with a peristaltic pump (dynamic method) allows the penetration of cells inside of the scaffold compared with the application of the cell suspension on the scaffold surface (static method). In contrast to cells seeding to scaffold by dynamic method the cells seeding by static method migrate from scaffolds in the first few days almost completely. It is found that BMSCs cultured in 3D polylactide scaffold modified by fibrin form colonies, while BMSCs cultured in 3D polylactide-scaffold modified by collagen type I distribute inside scaffold such single cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

seeding scaffold
12
cells seeding
12
bone marrow
8
scaffold surface
8
dynamic method
8
inside scaffold
8
static method
8
bmscs cultured
8
cells
7
scaffold
7

Similar Publications

Validation of Machine Learning-assisted Screening of PKC Ligands: PKC Binding Affinity and Activation.

Biosci Biotechnol Biochem

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.

Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.

View Article and Find Full Text PDF

Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect.

View Article and Find Full Text PDF

Synthesis and characterization of photo-cross-linkable quince seed-based hydrogels for soft tissue engineering applications.

Carbohydr Polym

March 2025

Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Azrieli Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada. Electronic address:

The convenience, versatility, and biocompatibility of photocrosslinkable hydrogel precursors make them promising candidates for developing tissue engineering scaffolds. However, the current library of photosensitive materials is limited. This study reports, for the first time, the modification of quince seed mucilage (QS) with glycidyl methacrylate (GM), resulting in the synthesis of methacrylated QS (QSGM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!