Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lx2-32c is a novel taxane that has been demonstrated to have robust antitumor activity against different types of tumors including several paclitaxel-resistant neoplasms. Since the delivery vehicles for taxane, which include cremophor EL, are all associated with severe toxic effects, liposome-based Lx2-32c has been developed. In the present study, the pharmacokinetics, biodistribution, antitumor efficacy and safety characteristics of liposome-based Lx2-32c were explored and compared with those of cremophor-based Lx2-32c. The results showed that liposome-based Lx2-32c displayed similar antitumor effects to cremophor-based Lx2-32c, but with significantly lower bone marrow toxicity and cardiotoxicity, especially with regard to the low ratio of hypersensitivity reaction. In comparing these two delivery modalities, targeting was superior using the Lx2-32c liposome formulation; it achieved significantly higher uptake in tumor than in bone marrow and heart. Our data thus suggested that the Lx2-32c liposome was a novel alternative formulation with comparable antitumor efficacy and a superior safety profiles to cremophor-based Lx2-32c, which might be related to the improved pharmacokinetic and biodistribution characteristics. In conclusion, the Lx2-32c liposome could be a promising alternative formulation for further development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266495 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114688 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!