Glioblastoma multiforme (GBM) is one of the most malignant cancers in human brain. The prognosis of GBM is extremely poor because it is resistant to radiotherapy and chemotherapy. Improving understanding of the tumor biology brings some new hope to the treatment of GBM. In this review, we discuss the evidence that FoxM1 promotes the development and progression of GBM by regulating key factors involved in cell proliferation, epithelial to mesenchymal transition (EMT), invasion, angiogenesis and upregulating Wnt/β-catenin signalling. Our recent experimental findings are also summarized to prove that FoxM1 is a novel therapeutic target against GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380124 | PMC |
http://dx.doi.org/10.2174/1381612821666141211115949 | DOI Listing |
NMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFIn the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals.
View Article and Find Full Text PDFIt is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.
View Article and Find Full Text PDFThe rapid growth, invasiveness, and resistance to treatment of glioblastoma multiforme (GBM) underscore the urgent need for improved diagnostics and therapies. Current surgical practice is limited by challenges with intraoperative imaging, while recurrence monitoring requires expensive magnetic resonance or nuclear imaging scans. Here we introduce 'acoustic tumor paint', an approach to labeling brain tumors for ultrasound imaging, a widely accessible imaging modality.
View Article and Find Full Text PDFGlioblastoma tumors remain a formidable challenge for immune-based treatments because of their molecular heterogeneity, poor immunogenicity, and growth in the largely isolated and immunosuppressive neural environment. As the tumor grows, GBM cells change the composition and architecture of the neural extracellular matrix (ECM), affecting the mobility, survival, and function of immune cells such as tumor-associated microglia and infiltrated macrophages (TAMs). We have previously described the unique expression of the ECM protein EFEMP1/fibulin-3 in GBM compared to normal brain and demonstrated that this secreted protein promotes the growth of the GBM stem cell (GSC) population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!