Juvenile hormone (JH) and JH agonists have been reported to induce male offspring production in various daphnid species including Daphnia magna. We recently established a short-term in vivo screening assay to detect chemicals having male offspring induction activity in adult D. magna. Diofenolan has been developed as a JH agonist for insect pest control, but its male offspring induction activity in daphnids has not been investigated yet. In this study, we found that the insect growth regulator (IGR) diofenolan exhibited a potent male offspring induction activity at low ng/L to μg/L concentrations, as demonstrated by the short-term in vivo screening assay and the recently developed TG211 ANNEX 7 test protocol. A two-hybrid assay performed using the D. magna JH receptor confirmed that diofenolan had a strong JH activity. Global whole body transcriptome analysis of D. magna exposed to 10 ng/L diofenolan showed an up-regulation of JH-responsive genes and modulation of several genes involved in the ecdysone receptor signaling pathway. These results clearly demonstrate that diofenolan has strong JH activity and male offspring induction activity, and that a combination of modified standardized regulatory testing protocols and rapid in vitro and in vivo screening assays are able to identify potential endocrine disruptors in D. magna. The observation that diofenolan modulates multiple endocrine signaling pathways in D. magna suggests that further investigation of potential interference with growth, development and reproduction is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2014.11.015DOI Listing

Publication Analysis

Top Keywords

male offspring
24
offspring induction
16
induction activity
16
vivo screening
12
offspring production
8
juvenile hormone
8
daphnia magna
8
short-term vivo
8
screening assay
8
diofenolan strong
8

Similar Publications

Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.

View Article and Find Full Text PDF

An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes.

View Article and Find Full Text PDF

Available evidence from animal studies suggests that placental serotonin plays an important role in proper fetal development and programming by altering brain circuit formation, which later translates into altered abnormal adult behaviors. Several environmental stimuli, including stress and maternal inflammation, affect placental and, hence, fetal serotonin levels and thus may disturb fetal brain development. We investigated the effect of prenatal stress of varying intensities on the formation of adaptive behaviors in mouse offspring and the role of placental serotonin in these processes.

View Article and Find Full Text PDF

The Developmental Origins of Health and Disease (DOHaD) framework has highlighted the role of maternal and paternal health on disease risk in offspring and across generations. Although adolescence is increasingly recognised as a key DOHaD window where interventions may have the greatest impact in breaking the cycle of non-communicable diseases, data around the recognition of this concept in adolescents remain limited. Previous work by our group found that the understanding of DOHaD-related concepts among adolescents in New Zealand was low, including some adolescents showing disagreement with key DOHaD concepts.

View Article and Find Full Text PDF

Neutral Genetic Diversity in Mixed Mating Systems.

Genes (Basel)

December 2024

Department of Biology, Duke University, P.O. Box 90338, Durham, NC 27708-0338, USA.

Background/objectives: Systems of reproduction differ with respect to the magnitude of neutral genetic diversity maintained in a population. In particular, the partitioning of reproductive organisms into mating types and regular inbreeding have long been recognized as key factors that influence effective population number. Here, a range of reproductive systems are compared with respect to the maintenance of neutral genetic diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!