Syringyl lignins result from the oxidative polymerization of sinapyl alcohol in a reaction mediated by syringyl (basic) peroxidases. Several peroxidases have been identified in the genome of Arabidopsis thaliana as close homologues to ZePrx, the best characterized basic peroxidase so far, but none of these has been directly involved in lignification. We have used a knock-out mutant of AtPrx4, the closest homologue to ZePrx, to study the involvement of this basic peroxidase in the physiology of the plant under both long- and short-day light conditions. Our results suggest that AtPrx4 is involved in cell wall lignification, especially in syringyl monomer formation. The disruption of AtPrx4 causes a decrease in syringyl units proportion, but only when light conditions are optimal. Moreover, the effect of AtPrx4 disruption is age-dependent, and it is only significant when the elongation process of the stem has ceased and lignification becomes active. In conclusion, AtPrx4 emerges as a basic peroxidase regulated by day length with an important role in lignification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2014.11.006DOI Listing

Publication Analysis

Top Keywords

basic peroxidase
12
arabidopsis thaliana
8
light conditions
8
syringyl
5
atprx4
5
peroxidase
4
peroxidase involved
4
involved syringyl
4
syringyl lignin
4
lignin formation
4

Similar Publications

To screen rice varieties with high storage stability for eating quality and elucidate their traits, 34 widely grown rice varieties were selected to examine the changes in the eating quality of their grains after natural storage for one year. A hierarchical analysis, normalization method, and cluster analysis were used to identify the rice varieties that maintained their eating quality during storage. Meanwhile, the yield and its components, panicle traits, grain size, grain major component content, physiological indicators (such as antioxidant enzyme activity), and key growth stages were analyzed at rice maturity.

View Article and Find Full Text PDF

Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide.

Animals (Basel)

December 2024

Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.

In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450).

View Article and Find Full Text PDF

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!