Simple Method to Produce in vitro Pyrenophora tritici-repentis Teleomorph.

Plant Pathol J

National High College of Agriculture (E.N.S.A.), Department of Botanic, 1 Avenue Pasteur, Hassen Badi, El-Harrach, Algiers Algeria.

Published: December 2014

A fungus Pyrenophora tritici-repentis induces tan spot of wheat which is a foliar disease that causes yield loss to wheat crops worldwide. In this study, a new, simple and non-costly technique was performed to produce the sexual stage of this fungus in culture, within 9 weeks using wheat straw. This protocol will be helpful to researchers studying the biology of sexual stage development, disease epidemiology and genetics of this fungus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262297PMC
http://dx.doi.org/10.5423/PPJ.NT.06.2014.0049DOI Listing

Publication Analysis

Top Keywords

pyrenophora tritici-repentis
8
sexual stage
8
simple method
4
method produce
4
produce vitro
4
vitro pyrenophora
4
tritici-repentis teleomorph
4
teleomorph fungus
4
fungus pyrenophora
4
tritici-repentis induces
4

Similar Publications

Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.

View Article and Find Full Text PDF

Race structure of in the Kansas wheat pathogen population.

Plant Dis

December 2024

Kansas State University, Plant Pathology, 4024 Throckmorton PSC, Manhattan, Kansas, United States, 66506.

Article Synopsis
  • Tan spot, a wheat disease caused by the pathogen Pyrenophora tritici-repentis, involves three necrotrophic effectors (Ptr ToxA, Ptr ToxB, and Ptr ToxC), and its variations are sorted into a race system based on their genetic combinations.
  • A survey in Kansas identified 63 isolates of Ptr, revealing that race 1, which includes the harmful Ptr ToxA, is the most prevalent, along with the existence of races 2, 3, and 4.
  • These findings suggest that wheat breeding efforts in Kansas should aim to reduce the susceptibility gene Tsn1 to enhance resistance against the pathogen, providing valuable insights for breeders and path
View Article and Find Full Text PDF
Article Synopsis
  • The Dothideomycete fungal pathogen Ptr causes tan spot disease in wheat, with known proteinaceous effectors ToxA and ToxB, and a partially characterized nonproteinaceous effector ToxC.
  • Two new compounds, ToxE1 and ToxE2, were identified from Ptr cultures, inducing specific chlorotic symptoms in wheat leaves without being linked to ToxC.
  • The compounds were found in infected wheat and analyzed via NMR spectroscopy, revealing a phthalide core structure, suggesting a potential role in phytotoxicity and disease progression.
View Article and Find Full Text PDF

A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P.

View Article and Find Full Text PDF

Ophibolin A, a fungal sesterterpene, exerts a pivotal influence in a diverse array of biological processes, encompassing herbicidal, bactericidal, fungicidal, and cytotoxic activities. Sixty genes associated with sesterterpene compound biosynthesis were obtained from via transcriptome sequencing, and those closely linked to ophiobolin A biosynthesis were subsequently filtered. A gene encoding 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) that catalyzes the first committed step of ophiobolin biosynthesis in the mevalonic acid (MVA) pathway was isolated and characterized using RACE (Rapid Amplification of cDNA Ends) technology from ophiobolin A-producing fungus, .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!