Genome-wide association studies have identified strong associations between the risk of developing Parkinson's disease (PD) and polymorphisms in the genes encoding α-synuclein and the microtubule-associated protein tau. However, the contribution of tau and its phosphorylated form (p-tau) to α-synuclein-induced pathology and neuronal dysfunction remains controversial. We have assessed the effects of NAP (davunetide), an eight-amino acid peptide that decreases tau hyperphosphorylation, in mice overexpressing wild-type human α-synuclein (Thy1-aSyn mice), a model that recapitulates aspects of PD. We found that the p-tau/tau level increased in a subcortical tissue block that includes the striatum and brain stem, and in the cerebellum of the Thy1-aSyn mice compared to nontransgenic controls. Intermittent intranasal NAP administration at 2 μg/mouse per day, 5 days a week, for 24 weeks, starting at 4 weeks of age, significantly decreased the ratio of p-tau/tau levels in the subcortical region while a higher dose of 15 μg/mouse per day induced a decrease in p-tau/tau levels in the cerebellum. Both NAP doses reduced hyperactivity, improved habituation to a novel environment, and reduced olfactory deficits in the Thy1-aSyn mice, but neither dose improved the severe deficits of motor coordination observed on the challenging beam and pole, contrasting with previous data obtained with continuous daily administration of the drug. The data reveal novel effects of NAP on brain p-tau/tau and behavioral outcomes in this model of synucleinopathy and suggest that sustained exposure to NAP may be necessary for maximal benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186425PMC
http://dx.doi.org/10.1002/prp2.65DOI Listing

Publication Analysis

Top Keywords

thy1-asyn mice
12
intranasal nap
8
nap davunetide
8
decreases tau
8
tau hyperphosphorylation
8
mice overexpressing
8
effects nap
8
μg/mouse day
8
p-tau/tau levels
8
mice
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!