Parthenogenesis in animals is often associated with polyploidy and restriction to extreme habitats or recently deglaciated areas. It has been hypothesized that benefits conferred by asexual reproduction and polyploidy are essential for colonizing these habitats. However, while evolutionary routes to parthenogenesis are manifold, study systems including polyploids are scarce in arthropods. The jumping-bristletail genus Machilis (Insecta: Archaeognatha) includes both sexual and parthenogenetic species, and recently, the occurrence of polyploidy has been postulated. Here, we applied flow cytometry, karyotyping, and mitochondrial DNA sequencing to three sexual and five putatively parthenogenetic Eastern-Alpine Machilis species to investigate whether (1) parthenogenesis originated once or multiply and (2) whether parthenogenesis is strictly associated with polyploidy. The mitochondrial phylogeny revealed that parthenogenesis evolved at least five times independently among Eastern-Alpine representatives of this genus. One parthenogenetic species was exclusively triploid, while a second consisted of both diploid and triploid populations. The three other parthenogenetic species and all sexual species were diploid. Our results thus indicate that polyploidy can co-occur with parthenogenesis, but that it was not mandatory for the emergence of parthenogenesis in Machilis. Overall, we found a weak negative correlation of monoploid genome size (Cx) and chromosome base number (x), and this connection is stronger among parthenogenetic species alone. Likewise, monoploid genome size decreased with elevation, and we therefore hypothesize that genome downsizing could have been crucial for the persistence of alpine Machilis species. Finally, we discuss the evolutionary consequences of intraspecific chromosomal rearrangements and the presence of B chromosomes. In doing so, we highlight the potential of Alpine Machilis species for research on chromosomal and genome-size alterations during speciation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242562 | PMC |
http://dx.doi.org/10.1002/ece3.1264 | DOI Listing |
Animals (Basel)
January 2025
Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy.
Suboptimal culture conditions during in vitro maturation (IVM) affect oocyte developmental competence and the viability of the resulting embryo. Three-dimensional (3D) culture systems provide a more biologically appropriate environment compared to traditional two-dimensional (2D) cultures. The aim of this study was to evaluate the effect of liquid marble (LM) microbioreactors as a 3D culture system on IVM and the subsequent embryo development of prepubertal goat oocytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic.
Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species.
View Article and Find Full Text PDFTheriogenology
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China. Electronic address:
Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Zoology, University of Cologne, Cologne, Germany.
Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.
View Article and Find Full Text PDFVet Sci
January 2025
College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
Chlorogenic acid (CGA) has strong antioxidant properties. In order to improve the low maturation rate and poor vitrification freezing effect of sheep oocytes caused by oxidative stress. In this study, oocytes from 200 2-3-year-old Kazakh sheep were collected, and different concentrations of CGA were added to the maturation medium and vitrification freezing solution to study the effects of CGA on the maturation rate, cleavage rate, blastocyst rate, reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, and the expression levels of oxidation and apoptosis-related genes in sheep oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!