All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct trade-off between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds' nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds' nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242575 | PMC |
http://dx.doi.org/10.1002/ece3.1054 | DOI Listing |
Pest Manag Sci
January 2025
Forest Ecology and Restoration Group (FORECO), Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain.
Background: Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.
Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e.
View Article and Find Full Text PDFKobuviruses (family , genus ) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, and filoviruses, though much of the bat virome still remains uncharacterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!