Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells.

J Natl Cancer Inst

CNRS UMR 8161, Institut de Biologie de Lille, Université de Lille, Institut Pasteur de Lille, IFR142, Lille, France (DM, NM, RM, VP, YdL, OM, ND); Université Paris-sud, CNRS UMR 8126 and Institut Gustave Roussy, Villejuif, France (CB, ASJP, PB); GalPharma Co., Ltd. 884-3-302, Fuseishi-Cho, Takamatsu-shi, Kagawa 761-8071 Japan (TN); Department of Immunology, Kagawa University. 1750-1 Ikenobe, Miki-Cho, Kagawa 761-0793 Japan (TN); Department of head and Neck Oncology, Institut Gustave Roussy, Villejuif, France (JG).

Published: January 2015

Background: Regulatory T cells (Treg) and tumor-exosomes are thought to play a role in preventing the rejection of malignant cells in patients bearing nasopharyngeal carcinoma (NPC).

Methods: Treg recruitment by exosomes derived from NPC cell lines (C15/C17-Exo), exosomes isolated from NPC patients' plasma (Patient-Exo), and CCL20 were tested in vitro using Boyden chamber assays and in vivo using a xenograft SCID mouse model (n = 5), both in the presence and absence of anti-CCL20 monoclonal antibodies (mAb). Impact of these NPC exosomes (NPC-Exo) on Treg phenotype and function was determined using adapted assays (FACS, Q-PCR, ELISA, and MLR). Experiments were performed in comparison with exosomes derived from plasma of healthy donors (HD-Exo). The Student's t test was used for group comparisons. All statistical tests were two-sided.

Results: CCL20 allowed the intratumoral recruitment of human Treg. NPC-Exo also facilitated Treg recruitment (3.30 ± 0.34 fold increase, P < .001), which was statistically significantly inhibited (P < .001) by an anti-CCL20 blocking mAb. NPC-Exo also recruited conventional CD4(+)CD25(-) T cells and mediated their conversion into inhibitory CD4(+)CD25(high) cells. Moreover, NPC-Exo enhanced (P = .0048) the expansion of human Treg, inducing the generation of Tim3(Low) Treg with increased expression of CD25 and FOXP3. Finally, NPC-Exo induced an overexpression of cell markers associated with Treg phenotype, properties and recruitment capacity. For example, GZMB mean fold change was 21.45 ± 1.75 (P < .001). These results were consistent with a stronger suppression of responder cells' proliferation and the secretion of immunosuppressive cytokines (IL10, TGFB1).

Conclusion: Interactions between NPC-Exo and Treg represent a newly defined mechanism that may be involved in regulating peripheral tolerance by tumors and in supporting immune evasion in human NPC.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/dju363DOI Listing

Publication Analysis

Top Keywords

treg
9
regulatory cells
8
treg recruitment
8
exosomes derived
8
npc-exo treg
8
treg phenotype
8
human treg
8
npc-exo
6
exosomes
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!