Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Nuclear factor erythroid 2-related factor 2 (Nrf2), the cellular master regulator of the antioxidant response, dissociates from its inhibitor Keap1 when activated by stress signals and participates in the pathogenesis of viral infections and tumorigenesis. Early during de novo infection of endothelial cells, KSHV induces Nrf2 through an intricate mechanism involving reactive oxygen species (ROS) and prostaglandin E2 (PGE2). When we investigated the Nrf2 activity during latent KSHV infection, we observed increased nuclear serine-40-phosphorylated Nrf2 in human KS lesions compared to that in healthy tissues. Using KSHV long-term-infected endothelial cells (LTC) as a cellular model for KS, we demonstrated that KSHV infection induces Nrf2 constitutively by extending its half-life, increasing its phosphorylation by protein kinase Cζ (PKCζ) via the infection-induced cyclooxygenase-2 (COX-2)/PGE2 axis and inducing its nuclear localization. Nrf2 knockdown in LTC decreased expression of antioxidant genes and genes involved in KS pathogenesis such as the NAD(P)H quinone oxidase 1 (NQO1), gamma glutamylcysteine synthase heavy unit (γGCSH), the cysteine transporter (xCT), interleukin 6 (IL-6), and vascular endothelial growth factor A (VEGF-A) genes. Nrf2 activation was independent of oxidative stress but dependent on the autophagic protein sequestosome-1 (SQSTM1; p62). SQSTM1 levels were elevated in LTC, a consequence of protein accumulation due to decreased autophagy and Nrf2-mediated transcriptional activation. SQSTM1 was phosphorylated on serine-351 and -403, while Keap1 was polyubiquitinated with lysine-63-ubiquitin chains, modifications known to increase their mutual affinity and interaction, leading to Keap1 degradation and Nrf2 activation. The latent KSHV protein Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (vFLIP) increased SQSTM1 expression and activated Nrf2. Collectively, these results demonstrate that KSHV induces SQSTM1 to constitutively activate Nrf2, which is involved in the regulation of genes participating in KSHV oncogenesis.
Importance: The transcription factor Nrf2 is activated by stress signals, including viral infection, and responds by activating the transcription of cytoprotective genes. Recently, Nrf2 has been implicated in oncogenesis and was shown to be activated during de novo KSHV infection of endothelial cells through ROS-dependent pathways. The present study was undertaken to determine the mechanism of Nrf2 activation during prolonged latent infection of endothelial cells, using an endothelial cell line latently infected with KSHV. We show that Nrf2 activation was elevated in KSHV latently infected endothelial cells independently of oxidative stress but dependent on the autophagic protein sequestosome-1 (SQSTM1), which was involved in the degradation of the Nrf2 inhibitor Keap1. Furthermore, our results indicated that the KSHV latent protein vFLIP participates in Nrf2 activation. This study suggests that KSHV hijacks the host's autophagic protein SQSTM1 to induce Nrf2 activation, thereby manipulating the infected host gene regulation to promote KS pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338888 | PMC |
http://dx.doi.org/10.1128/JVI.02742-14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!