Expansion of the structural diversity of peptide antibiotics was performed through two different methods. Supplementation-based incorporation (SPI) and stop-codon suppression (SCS) approaches were used for co-translational incorporation of isostructural and orthogonal noncanonical amino acids (ncAAs) into the lasso peptide capistruin. Two ncAAs were employed for the SPI method and five for the SCS method; each of them probing the incorporation of ncAAs in strategic positions of the molecule. Evaluation of the assembly by HR-ESI-MS proved more successful for the SCS method. Bio-orthogonal chemistry was used for post-biosynthetic modification of capistruin congener Cap_Alk10 containing the ncAA Alk (Nε-Alloc-L-lysine) instead of Ala. A second-generation Hoveyda-Grubbs catalyst was used for an in vitro metathesis reaction with Cap_Alk10 and an allyl alcohol, which offers options for post-biosynthetic modifications. The use of synthetic biology allows for the in vivo production of new peptide-based antibiotics from an expanded amino acid repertoire.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201402558 | DOI Listing |
Biochemistry
January 2025
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, Texas 78712, United States.
Language modeling applied to biological data has significantly advanced the prediction of membrane penetration for small-molecule drugs and natural peptides. However, accurately predicting membrane diffusion for peptides with pharmacologically relevant modifications remains a substantial challenge. Here, we introduce PeptideCLM, a peptide-focused chemical language model capable of encoding peptides with chemical modifications, unnatural or noncanonical amino acids, and cyclizations.
View Article and Find Full Text PDFNat Protoc
January 2025
Department of Chemistry, University of California, Berkeley, CA, USA.
Aminoacyl-tRNA synthetases (aaRSs) provide an essential functional link between an mRNA sequence and the protein it encodes. aaRS enzymes catalyze a two-step chemical reaction that acylates specific tRNAs with a cognate α-amino acid. In addition to their role in translation, acylated tRNAs contribute to non-ribosomal natural product biosynthesis and are implicated in multiple human diseases.
View Article and Find Full Text PDFInfect Immun
December 2024
Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
RNA viruses possess small genomes encoding a limited repertoire of essential and often multifunctional proteins. Although genetically tagging viral proteins provides a powerful tool for dissecting mechanisms of viral replication and infection, it remains a challenge. Here, we leverage genetic code expansion to develop a recoded strain of respiratory syncytial virus (RSV) in which the multifunctional nucleoprotein is site-specifically modified with a noncanonical amino acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!