Highly enantioselective [3+2] cycloaddition of vinylcyclopropane with nitroalkenes catalyzed by palladium(0) with a chiral bis(tert-amine) ligand.

Chemistry

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China), Fax: (+86)-10-62554614; University of Chinese Academy of Sciences, Beijing 100049 (China).

Published: February 2015

An enantioselective [3+2] cycloaddition of vinyl cyclopropane derived from 1,3-indanedione with nitroalkenes catalyzed by palladium(0) with a chiral bis(tert-amine) ligand was developed in high yields with good diastereoselectivities and excellent enantioselectivities. The resulting bis(tert-amine)-palladium complex proved to be a highly efficient catalyst for this cycloaddition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201405407DOI Listing

Publication Analysis

Top Keywords

enantioselective [3+2]
8
[3+2] cycloaddition
8
nitroalkenes catalyzed
8
catalyzed palladium0
8
palladium0 chiral
8
chiral bistert-amine
8
bistert-amine ligand
8
highly enantioselective
4
cycloaddition vinylcyclopropane
4
vinylcyclopropane nitroalkenes
4

Similar Publications

Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.

View Article and Find Full Text PDF

Enantioselective Catalytic Synthesis of Inherently Chiral Calixarenes.

Chem Rec

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.

Since the introduction of the concept of inherent chirality by Böhmer, an important part of research focused on the asymmetric synthesis of calixarene macrocycles. However, long synthetic procedures and tedious separation strategies hampered the application of this technology in many topics of organic chemistry, including enantioselective molecular recognition and catalysis. Very recently, a new generation of enantioselective catalytic methodologies has been reported, able to provide highly functionalized, inherently chiral calixarenes in a straightforward manner.

View Article and Find Full Text PDF

The substitution of an aromatic ring with a C(sp)-rich bicyclic hydrocarbon, known as bioisosteric replacement, plays a crucial role in modern drug discovery. Substituted bicyclo[1.1.

View Article and Find Full Text PDF

Enantioselective reductive cross-couplings to forge C(sp)-C(sp) bonds by merging electrochemistry with nickel catalysis.

Nat Commun

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.

Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.

View Article and Find Full Text PDF

Enantioselective Borylcupration/Cyclization of Alkene-Tethered Oxime Esters.

Angew Chem Int Ed Engl

January 2025

University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA.

A copper-catalyzed enantioselective synthesis of borylated 1-pyrrolines from γ,δ-unsaturated oxime esters is reported. Twenty-four novel 1-pyrroline derivatives are reported in yields ranging from 26% to 96% and enantioselectivities from 74.5:25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!