The regulation of cardiac differentiation is critical for maintaining normal cardiac development and function. The precise mechanisms whereby cardiac differentiation is regulated remain uncertain. Here, we have identified a GATA-4 target, EGF, which is essential for cardiogenesis and regulates cardiac differentiation in a dose- and time-dependent manner. Moreover, EGF demonstrates functional interaction with GATA-4 in inducing the cardiac differentiation of P19CL6 cells in a time- and dose-dependent manner. Biochemically, GATA-4 forms a complex with STAT3 to bind to the EGF promoter in response to EGF stimulation and cooperatively activate the EGF promoter. Functionally, the cooperation during EGF activation results in the subsequent activation of cyclin D1 expression, which partly accounts for the lack of additional induction of cardiac differentiation by the GATA-4/STAT3 complex. Thus, we propose a model in which the regulatory cascade of cardiac differentiation involves GATA-4, EGF, and cyclin D1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113121PMC
http://dx.doi.org/10.1007/s00018-014-1795-9DOI Listing

Publication Analysis

Top Keywords

cardiac differentiation
28
egf
8
cardiac
8
differentiation p19cl6
8
p19cl6 cells
8
interaction gata-4
8
time- dose-dependent
8
dose-dependent manner
8
egf promoter
8
differentiation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!