Cell surface binding sites for the constituent proteins of the fibrinolytic system may play a role in the localization and regulation of fibrinolysis. In the present study, specific binding of recombinant human tissue-type plasminogen activator (rt-PA) to human blood platelets was identified and characterized. 125I-labeled rt-PA was found to bind specifically, saturably, and reversibly to the surface of gel-filtered platelets, reaching equilibrium within 5 min at 22 degrees C. Scatchard analysis revealed a single class of binding sites. Unstimulated platelets bound 120,000 +/- 24,000 (mean +/- S.D.) molecules/platelet with an apparent Kd of 340 +/- 25 nM, whereas thrombin-stimulated platelets bound 290,000 +/- 32,000 molecules/platelet with an apparent Kd of 800 +/- 60 nM. Binding of 0.1 microM 125I-rt-PA was greater than 90% reversible by a 50-fold excess of unlabeled rt-PA. Binding was not inhibited by fibrinogen or single chain urokinase-type plasminogen activator, but plasminogen partially competed for binding of 125I-rt-PA to platelets (up to 40% displacement). These findings indicate that the platelet surface possesses a large number of specific, low affinity binding sites for t-PA and provide further evidence for the role of platelets in localization and regulation of fibrinolysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasminogen activator
12
binding sites
12
human tissue-type
8
tissue-type plasminogen
8
localization regulation
8
regulation fibrinolysis
8
platelets bound
8
molecules/platelet apparent
8
platelets
7
binding
7

Similar Publications

Background: The definition of minor ischemic stroke (MIS) is a topic of debate, however, the most accepted definition is a stroke with National Institutes of Health Stroke Scale (NIHSS) ≤ 5. Intravenous thrombolysis (IVT) is a crucial treatment option for acute ischemic stroke (AIS) including: alteplase, recombinant human tissue-type plasminogen activator (r-tPA), and the recently approved tenecteplase. However, there is a debate regarding its safety and efficacy.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) is central to fibrinolysis regulation, and genetic variants such as the 4G/4G genotype predispose individuals to hypercoagulability. This case highlights a 46-year-old female patient presenting with acute mesenteric venous thrombosis, where genetic evaluation revealed homozygosity for the PAI-1 4G/4G polymorphism. Management with unfractionated heparin followed by a transition to direct oral anticoagulants led to clinical resolution.

View Article and Find Full Text PDF

Trauma-induced coagulopathy (TIC) is characterized by dynamic changes in fibrinolysis, which can significantly impact patient outcomes. These changes typically manifest in two phases: hyperfibrinolysis followed by fibrinolysis suppression. In the early stages of TIC, there is often an overwhelming release of tissue plasminogen activator, which leads to excessive fibrinolysis.

View Article and Find Full Text PDF

A cross-sectional study on the correlation between internal cerebral vein asymmetry and hemorrhagic transformation following endovascular thrombectomy.

Front Neurol

January 2025

Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.

Introduction: Hemorrhagic transformation (HT) is a severe complication in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO) after endovascular treatment (EVT). We hypothesize that asymmetry of the internal cerebral veins (ICVs) on baseline CT angiogram (CTA) may serve as an adjunctive predictor of HT.

Methods: We conducted a study on consecutive AIS-LVO patients from November 2020 to April 2022.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!