Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating.

Adv Mater

Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Published: February 2015

The mini-slot-die coater offers a simple, convenient, materials-efficient route to print bulk-heterojunction (BHJ) organic photovoltaics (OPVs) that show efficiencies similar to spin-coating. Grazing-incidence X-ray diffraction (GIXD) and GI small-angle X-ray scattering (GISAXS) methods are used in real time to characterize the active-layer formation during printing. A polymer-aggregation-phase-separation-crystallization mechanism for the evolution of the morphology describes the observations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201404040DOI Listing

Publication Analysis

Top Keywords

organic photovoltaics
8
fast printing
4
printing situ
4
situ morphology
4
morphology observation
4
observation organic
4
photovoltaics slot-die
4
slot-die coating
4
coating mini-slot-die
4
mini-slot-die coater
4

Similar Publications

Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.

View Article and Find Full Text PDF

Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.

View Article and Find Full Text PDF

Polythiophene donors offer scalable and cost-effective solutions for the organic photovoltaic industry. A thorough understanding of the structure-property-performance relationship is essential for advancing polythiophene-based organic solar cells (PTOSCs) with high power conversion efficiencies (PCEs). Herein, we develop two polythiophene donors─PTTz-CN and PTTz-CN(T2)─to verify the energy loss-quantum efficiency relationship.

View Article and Find Full Text PDF

Triplet Energy Migration in Cytoskeletal Polymers.

J Phys Chem B

December 2024

Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India.

Dexter energy transfer (DET) of triplet electronic states is used to direct energy in photovoltaics, quench reactive singlet oxygen species in biological systems, and generate them in photodynamic therapy. However, the extent to which repeated DET between aromatic residues can lead to triplet energy migration in proteins has not been investigated. Here, we computationally describe DET rates in microtubules, actin filaments and the intermediate filament, vimentin.

View Article and Find Full Text PDF

Expression of concern for 'Optimized Cu-doping in ZnO electro-spun nanofibers for enhanced photovoltaic performance in perovskite solar cells and photocatalytic dye degradation' by Kang Hoon Lee , , 2024, , 15391-15407, https://doi.org/10.1039/D4RA01544D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!