The presence of a synsacrum formed by the fusion of vertebrae that come into closed contact with the ilium and ischium is a feature that characterizes the clade Xenarthra. Nevertheless, the proper identity of each vertebral element that forms it is a matter of discussion. In this article, we provide ontogenetic information about skeletal ossification of the xenarthran synsacrum and define the position of the sacrocaudal limit within it. We analyzed the synsacrum of 25 specimens of nonadult and 101 adult armadillos and anteaters: Dasypus hybridus, D. novemcinctus, Chaetophractus vellerosus, C. villosus, Tamandua tetradactyla, and Myrmecophaga tridactyla. Two sets of vertebrae were identified: an anterior set, often attached to the iliac bones, in which transverse processes are originated mainly from an expansion of the base of the neural arches, and secondarily from a lateroventral ossification center. A posterior set is characterized by a series of vertebrae along which extra lateral ossifications (described here for the first time) are developed and form exclusively the transverse processes. Among armadillos, the sacrocaudal limit is set between the last vertebrae attached to the iliac bones and the first vertebrae that form the dorsal border of the sacroischial fenestra. In addition, anterior free caudals also showed extra lateral ossifications forming exclusively the transverse processes, supporting the notion that more posterior synsacrals are in fact caudal vertebrae that were incorporated to the synsacrum. In pilosans, the sacrocaudal limit is set between the first vertebrae that come into contact with the ischial bones and the immediately anterior one. However, the pattern of homologies is obscured by the low resolution in the ontogenetic sequence when compared to that of armadillos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.20356 | DOI Listing |
Folia Morphol (Warsz)
November 2020
Laboratory of Animal Anatomy, Federal University of Pampa, Campus Uruguaiana, BR 472, Km 585, Post box 118, 97501-970 Uruguaiana, Brazil.
Background: Leopardus geoffroyi is a Neotropical wild felid with wide distribution in the south of the South American continent. The objective was to investigate the skeletopy of the intumescentia lumbalis (IL) and conus medullaris (CM) from 11 specimens of L. geoffroyi collected dead on highways.
View Article and Find Full Text PDFJ Morphol
May 2015
Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina; División Paleontología de Vertebrados, Museo de La Plata, La Plata, Buenos Aires, Argentina.
J Hum Evol
September 2011
Department of Anthropology, 1 University Station C3200, The University of Texas at Austin, Austin, TX 78712, USA.
Taillessness is a distinctive synapomorphy of the Hominoidea that has implications for interpretation of the locomotor behaviors and phylogenetic affinities of the clade's earliest members. However, difficulties persist in confidently identifying taillessness in the catarrhine fossil record, stemming largely from our limited knowledge of the anatomical features with which the tail is associated. Here, we compare the morphology of the sacrum, the sole bony link between the tail and the rest of the body, among extant tailless hominoids and a broad sample of extant cercopithecoids known to vary in tail length (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!