Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201400475DOI Listing

Publication Analysis

Top Keywords

peak resolution
32
equivalent peak
20
peak overlap
20
extent separation
16
peak
13
relative peak
12
peaks gaussian
12
resolution
9
based relative
8
characterize extent
8

Similar Publications

Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.

View Article and Find Full Text PDF

Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH (FMRFa), which activates mollusc and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily.

View Article and Find Full Text PDF

Changes in climate and land-use have significantly increased both the frequency and intensity of wildland fires globally, exacerbating the potential for hazardous impacts on human health. A better understanding of particle exposure concentrations and scenarios is crucial for developing mitigation strategies to reduce the health risks. Here, PM and black carbon (BC) concentrations were monitored during wildland fires between 2022-2024, in fire-prone areas in Catalonia (NE Spain), by means of personal monitors (AirBeam2 and Micro-aethalometers AE51 and MA200).

View Article and Find Full Text PDF

The comprehensive identification of peaks in untargeted lipidomics using LC-MS/MS remains a significant challenge. Confidence in lipid annotation can be greatly improved by integrating a highly accurate machine learning-based retention time prediction model. Such an approach enables the identification of lipids for understanding pathogenic mechanisms, biomarker discovery, and drug screening.

View Article and Find Full Text PDF

Analysis of Residual Stress at the Interface of Epoxy-Resin/Silicon-Wafer Composites During Thermal Aging.

Polymers (Basel)

December 2024

Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China.

During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin and its thermal aging process changes. The uniaxial tensile approach and Raman spectroscopy (RAS) showed that the peak shift of aliphatic C-O in EP-Ss was negatively correlated with the external stress, and that the stress correlation coefficient was -2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!