Use of gold nanoparticles to detect water uptake in vascular plants.

PLoS One

Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San31, HyojaDong, Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea.

Published: December 2015

Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263702PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114902PLOS

Publication Analysis

Top Keywords

xylem vessels
20
vascular plants
16
gold nanoparticles
8
sap flows
8
aunps
7
vascular
5
xylem
5
vessels
5
nanoparticles detect
4
detect water
4

Similar Publications

Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( L.) Stems Under Elevated CO and Salt Stress.

Plants (Basel)

January 2025

State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.

Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.

View Article and Find Full Text PDF

Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis.

Nat Plants

January 2025

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.

View Article and Find Full Text PDF

Ca is a key nutrient for fruit quality due to its role in bonding with pectin in the cell wall, providing strength through cell-to-cell adhesion, thus increasing fruit firmness and extending post-harvest life. However, Ca accumulation is mostly limited to the initial stages of fruit development due to anatomical and physiological changes that occur as fruits develop. The objective of this study was to evaluate fruit transpiration, cuticle thickness, and pedicel vessel changes during cranberry fruit development and the effect these parameters might have on Ca translocation.

View Article and Find Full Text PDF

SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana.

Int J Biol Macromol

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!