We present a GEneral Neural Network (GENN) for learning trends from existing data and making predictions of unknown information. The main novelty of GENN is in its generality, simplicity of use, and its specific handling of windowed input/output. Its main strength is its efficient handling of the input data, enabling learning from large datasets. GENN is built on a two-layered neural network and has the option to use separate inputs-output pairs or window-based data using data structures to efficiently represent input-output pairs. The program was tested on predicting the accessible surface area of globular proteins, scoring proteins according to similarity to native, predicting protein disorder, and has performed remarkably well. In this paper we describe the program and its use. Specifically, we give as an example the construction of a similarity to native protein scoring function that was constructed using GENN. The source code and Linux executables for GENN are available from Research and Information Systems at http://mamiris.com and from the Battelle Center for Mathematical Medicine at http://mathmed.org. Bugs and problems with the GENN program should be reported to EF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930076 | PMC |
http://dx.doi.org/10.1007/978-1-4939-2239-0_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!