Life History Theory (LHT), a branch of evolutionary biology, describes how organisms maximize their reproductive success in response to environmental conditions. This theory suggests that challenging environmental conditions will lead to early pubertal maturation, which in turn predicts heightened risky sexual behavior. Although largely confirmed among female adolescents, results with male youth are inconsistent. We tested a set of predictions based on LHT with a sample of 375 African American male youth assessed three times from age 11 to age 16. Harsh, unpredictable community environments and harsh, inconsistent, or unregulated parenting at age 11 were hypothesized to predict pubertal maturation at age 13; pubertal maturation was hypothesized to forecast risky sexual behavior, including early onset of intercourse, substance use during sexual activity, and lifetime numbers of sexual partners. Results were consistent with our hypotheses. Among African American male youth, community environments were a modest but significant predictor of pubertal timing. Among those youth with high negative emotionality, both parenting and community factors predicted pubertal timing. Pubertal timing at age 13 forecast risky sexual behavior at age 16. Results of analyses conducted to determine whether environmental effects on sexual risk behavior were mediated by pubertal timing were not significant. This suggests that, although evolutionary mechanisms may affect pubertal development via contextual influences for sensitive youth, the factors that predict sexual risk behavior depend less on pubertal maturation than LHT suggests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359086 | PMC |
http://dx.doi.org/10.1007/s10508-014-0410-3 | DOI Listing |
Mol Cell Endocrinol
January 2025
Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. Electronic address:
Background And Aims: Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFAm Psychol
January 2025
Department of Psychology, University of Minnesota, Twin Cities.
Sexual minority adolescents experience puberty earlier than their heterosexual peers. Early puberty is an indicator of premature aging and can be partly driven by chronic stress linked to discrimination. Nonetheless, the neural, cognitive, and social development linked to puberty enables adolescents to explore and understand their sexual identities.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
Pubertal timing is highly variable and is associated with long-term health outcomes. Phenotypes associated with pubertal timing include age at menarche, age at voice break, age at first facial hair and growth spurt, and pubertal timing seems to have a shared genetic architecture between the sexes. However, puberty phenotypes have primarily been assessed separately, failing to account for shared genetics, which limits the reliability of the purported health implications.
View Article and Find Full Text PDFDev Psychol
January 2025
Department of Psychology, University of Alabama at Birmingham.
Early pubertal timing is associated with adverse health in adulthood. These effects may be mediated by DNA methylation changes associated with accelerated cellular aging and mortality risk, but few studies tested associations between pubertal timing and epigenetic markers in adulthood. Additionally, pubertal timing effects often vary by sex and are understudied in diverse youth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!