A metagenomic approach based on the use of genus specific primers was developed and utilized to characterize Colletotrichum species associated with the olive phyllosphere and carposphere. Selected markers enabled the specific amplification of almost the entire ITS1-5.8S-ITS2 region of the rDNA and its use as barcode gene. The analysis of different olive samples (green and senescent leaves, floral residues, symptomatic and asymptomatic fruits, and litter leaves and mummies) in three different phenological phases (June, October and December) enabled the detection of 12 genotypes associated with 4 phylotypes identified as C. godetiae, C. acutatum s.s., C. gloeosporioides s.s. and C. kahawae. Another three genotypes were not identified at the level of species but were associated with the species complexes of C. acutatum, C. gloeosporioides and C. boninense sensu lato. Colletotrichum godetiae and C. acutatum s.s. were by far the most abundant while C. gloeosporioides s.s. was detected in a limited number of samples whereas ther phylotypes were rarely found. The high incidence of C. acutatum s.s. represents a novelty for Italy and more generally for the Mediterranean basin since it had been previously reported only in Portugal. As regards to the phenological phase, Colletotrichum species were found in a few samples in June and were diffused on all assessed samples in December. According to data new infections on olive tissues mainly occur in the late fall. Furthermore, Colletotrichum species seem to have a saprophytic behavior on floral olive residues. The method developed in the present study proved to be valuable and its future application may contribute to the study of cycle and aetiology of diseases caused by Colletotrichum species in many different pathosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263604PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114031PLOS

Publication Analysis

Top Keywords

colletotrichum species
20
species associated
8
godetiae acutatum
8
acutatum gloeosporioides
8
species
7
colletotrichum
6
olive
5
molecular analysis
4
analysis colletotrichum
4
species carposphere
4

Similar Publications

Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.

View Article and Find Full Text PDF

Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.

View Article and Find Full Text PDF

Morphological variations and adhesive distribution: a cross-species examination in conidia.

Front Fungal Biol

December 2024

Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States.

is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars.

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

is a pathogenic fungus that infects flax and causes significant yield losses. In this study, we assembled the genomes of four highly virulent strains using the Oxford Nanopore Technologies (ONT, R10.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!