Omega-3 polyunsaturated fatty acids and brain aging.

Curr Opin Clin Nutr Metab Care

aUnité de Neurobiologie de l'Olfaction, NBO U1197, INRA, Jouy-en-Josas bINSERM UMR 894, Centre de Psychiatrie et Neurosciences, Paris cUnité MICALIS, UMR 1319, INRA, Jouy-en-Josas dUnité NutriNeurO, UMR INRA 1286, Université Victor Segalen Bordeaux 2, Bordeaux, France.

Published: March 2015

AI Article Synopsis

Article Abstract

Purpose Of Review: The literature on the influence of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) on brain aging has grown exponentially during the last decade. Many avenues have been explored but no global picture or clear evidence has emerged. Experimental studies have shown that ω-3 PUFA is involved in many neurobiological processes that are involved in neurotransmission and neuroprotection, indicating that these PUFAs may prevent age-related brain damage. Human studies have revealed only a weak link between ω-3 PUFA status and cognitive aging, whereas interventional studies have yet to confirm it. The purpose of this review is to analyze the developments in the area during the last 2 years.

Recent Findings: Human brain MRI studies have confirmed previous findings that ω-3 PUFA can protect the brain during aging; two intervention studies obtained clear evidence. We also analyzed the experimental data clarifying the involvement of ω-3 PUFA in neurotransmission, neuroprotection (including prevention of peroxidation, inflammation, and excitotoxicity), and neurogenesis, thereby helping the brain cope with aging.

Summary: These recent human and experimental studies provide support for and clarification of how ω-3 PUFA protect against brain aging and highlight the main lines for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCO.0000000000000141DOI Listing

Publication Analysis

Top Keywords

ω-3 pufa
24
brain aging
16
omega-3 polyunsaturated
8
polyunsaturated fatty
8
purpose review
8
clear evidence
8
experimental studies
8
neurotransmission neuroprotection
8
pufa protect
8
protect brain
8

Similar Publications

Preparation of human milk fat analogue by enzymatic interesterification reaction using palm stearin and fish oil.

J Food Sci Technol

April 2016

Department of Chemical Technology, University College of Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700 009 India.

Palm stearin fractionate (PSF), obtained from palm stearin by further fractionation with solvents and n-3 polyunsaturated fatty acids (n-3 PUFA) rich fish oil (FO) were subjected to interesterification at 1:1, 1:2, 1:3, 2:1 and 3:1 substrate molar ratio and catalyzed by lipase from Thermomyces lanuginosa for obtaining a product with triacylglycerol (TAG) structure similar to that of human milk fat (HMF). The parameters (molar ratio and time) of the interesterification reaction were standardized. The temperature of 60 °C and enzyme concentration of 10 % (w/w) were kept fixed as these parameters were previously optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!