AI Article Synopsis

  • The study investigates the impact of time on potassium balance during hemodialysis, finding that longer sessions lead to a greater reduction in potassium levels.
  • Study A involved 11 anuric patients undergoing both 4-hour and 8-hour dialysis sessions, while Study B analyzed 63 patients to identify key factors influencing potassium mass balance.
  • Results indicated that in addition to session duration, mean plasma potassium and the dialysis concentration gradient were significant predictors of potassium mass balance during treatment.

Article Abstract

Background: One of the most important pathogenetic factors involved in the onset of intradialysis arrhytmias is the alteration in electrolyte concentration, particularly potassium (K(+)).

Methods: Two studies were performed: Study A was designed to investigate above all the isolated effect of the factor time t on intradialysis K(+) mass balance (K(+)MB): 11 stable prevalent Caucasian anuric patients underwent one standard (∼4 h) and one long-hour (∼8 h) bicarbonate haemodialysis (HD) session. The latter were pair-matched as far as the dialysate and blood volume processed (90 L) and volume of ultrafiltration are concerned. Study B was designed to identify and rank the other factors determining intradialysis K(+)MB: 63 stable prevalent Caucasian anuric patients underwent one 4-h standard bicarbonate HD session. Dialysate K(+) concentration was 2.0 mmol/L in both studies. Blood samples were obtained from the inlet blood tubing immediately before the onset of dialysis and at t60, t120, t180 min and at end of the 4- and 8-h sessions for the measurement of plasma K(+), blood bicarbonates and blood pH. Additional blood samples were obtained at t360 min for the 8 h sessions. Direct dialysate quantification was utilized for K(+)MBs. Direct potentiometry with an ion-selective electrode was used for K(+) measurements.

Results: Study A: mean K(+)MBs were significantly higher in the 8-h sessions (4 h: -88.4 ± 23.2 SD mmol versus 8 h: -101.9 ± 32.2 mmol; P = 0.02). Bivariate linear regression analyses showed that only mean plasma K(+), area under the curve (AUC) of the hourly inlet dialyser diffusion concentration gradient of K(+) (hcgAUCK(+)) and AUC of blood bicarbonates and mean blood bicarbonates were significantly related to K(+)MB in both 4- and 8-h sessions. A multiple linear regression output with K(+)MB as dependent variable showed that only mean plasma K(+), hcgAUCK(+) and duration of HD sessions per se remained statistically significant. Study B: mean K(+)MBs were -86.7 ± 22.6 mmol. Bivariate linear regression analyses showed that only mean plasma K(+), hcgAUCK(+) and mean blood bicarbonates were significantly related to K(+)MB. Again, only mean plasma K(+) and hcgAUCK(+) predicted K(+)MB at the multiple linear regression analysis.

Conclusions: Our studies enabled to establish the ranking of factors determining intradialysis K(+)MB: plasma K(+) → dialysate K(+) gradient is the main determinant; acid-base balance plays a much less important role. The duration of HD session per se is an independent determinant of K(+)MB.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfu376DOI Listing

Publication Analysis

Top Keywords

blood bicarbonates
16
linear regression
16
factors determining
12
8-h sessions
12
plasma hcgauck+
12
blood
9
ranking factors
8
mass balance
8
bicarbonate haemodialysis
8
study designed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!