A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner. | LitMetric

Steroid insensitivity is commonly observed in patients with chronic obstructive pulmonary disease. Here, we report the effects and mechanisms of carbocysteine (S-CMC), a mucolytic agent, in cellular and animal models of oxidative stress-mediated steroid insensitivity. The following results were obtained: oxidative stress induced higher levels of interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α), which are insensitive to dexamethasone (DEX). The failure of DEX was improved by the addition of S-CMC by increasing histone deacetylase 2 (HDAC2) expression/activity. S-CMC also counteracted the oxidative stress-induced increase in reactive oxygen species (ROS) levels and decreases in glutathione (GSH) levels and superoxide dismutase (SOD) activity. Moreover, oxidative stress-induced events were decreased by the thiol-reducing agent dithiothreitol (DTT), enhanced by the thiol-oxidizing agent diamide, and the ability of DEX was strengthened by DTT. In addition, the oxidative stress-induced decrease in HDAC2 activity was counteracted by S-CMC by increasing thiol/GSH levels, which exhibited a direct interaction with HDAC2. S-CMC treatment increased HDAC2 recruitment and suppressed H4 acetylation of the IL-8 promoter, and this effect was further ablated by addition of buthionine sulfoximine, a specific inhibitor of GSH synthesis. Our results indicate that S-CMC restored steroid sensitivity by increasing HDAC2 expression/activity in a thiol/GSH-dependent manner and suggest that S-CMC may be useful in a combination therapy with glucocorticoids for treatment of steroid-insensitive pulmonary diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2014.12.002DOI Listing

Publication Analysis

Top Keywords

oxidative stress-induced
12
steroid sensitivity
8
histone deacetylase
8
thiol/gsh-dependent manner
8
steroid insensitivity
8
s-cmc increasing
8
hdac2 expression/activity
8
s-cmc
7
oxidative
5
hdac2
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!