Linoleates are required for normal mammalian health and development, but they are also prone to oxidation, resulting in biologically active metabolites such as hydroxyoctadecadienoic acids (HODEs). To investigate the biological activity of 9-EZ-HODE, 10-EZ-HODE, 12-ZE-HODE, and 13-ZE-HODE, the metabolites of singlet-oxygen-derived products from linoleates, we assessed adaptive cytoprotection in HaCaT skin cells. Treating HaCaT cells with sublethal concentrations of 10-EZ-HODE and 12-ZE-HODE, which are singlet-oxygen-mediated specific oxidation metabolites of linoleates, but not 9-EZ-HODE and 13-ZE-HODE, caused resistance to hydrogen peroxide-induced oxidative damage. Microarray analysis of HaCaT cells revealed that 10-EZ-HODE and 12-ZE-HODE induced cellular antioxidant genes that are responsive to nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), such as heme oxygenase-1 and glutathione synthesis enzymes. Although 10-EZ-HODE and 12-ZE-HODE did not induce Nrf2 mRNA, treatment with these metabolites increased the intranuclear expression of Nrf2. These results suggest that 10-EZ-HODE and 12-ZE-HODE initiate adaptive responses that reduce the damage caused by oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2014.12.004 | DOI Listing |
Free Radic Biol Med
February 2015
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.
Linoleates are required for normal mammalian health and development, but they are also prone to oxidation, resulting in biologically active metabolites such as hydroxyoctadecadienoic acids (HODEs). To investigate the biological activity of 9-EZ-HODE, 10-EZ-HODE, 12-ZE-HODE, and 13-ZE-HODE, the metabolites of singlet-oxygen-derived products from linoleates, we assessed adaptive cytoprotection in HaCaT skin cells. Treating HaCaT cells with sublethal concentrations of 10-EZ-HODE and 12-ZE-HODE, which are singlet-oxygen-mediated specific oxidation metabolites of linoleates, but not 9-EZ-HODE and 13-ZE-HODE, caused resistance to hydrogen peroxide-induced oxidative damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!