The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets.

Eur J Pharmacol

Central Nervous System Research Laboratories, Central Nervous System Research & Development Unit, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan. Electronic address:

Published: January 2015

The adenosine A2A receptor antagonist, istradefylline, enhances anti-parkinsonian activity in patients with advanced Parkinson׳s disease (PD) already treated with combinations of L-DOPA and dopamine agonist drugs but who are still exhibiting prolonged 'OFF' periods. In contrast, the effects of istradefylline on motor function when administered in combination with low dose dopamine agonist therapy in early PD are unknown. We now investigate whether istradefylline administered with a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide enhances anti-parkinsonian activity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Both ropinirole (0.01-0.1mg/kg p.o.) and pergolide (0.003-0.1mg/kg p.o.) administered alone produced dose dependent increases in locomotor activity, a reduction in motor disability. Threshold doses of ropinirole (0.025-0.075mg/kg p.o.) and pergolide (0.01-0.075mg/kg p.o.) were then selected that in individual animals caused a small but non-significant anti-parkinsonian effect. Administration of istradefylline (10mg/kg p.o.) alone resulted in a decrease in motor disability and increase in 'ON' time but dyskinesia was not observed. Combined administration of pergolide or ropinirole with istradefylline resulted in an increase in the reversal of motor disability and increase in 'ON' time compared to that produced by either treatment alone but dyskinesia was still not observed. These results show that istradefylline is effective in improving motor function when combined with low dose dopamine agonist treatment. In early PD, this may avoid dose escalation or allow a reduction in dopamine agonist dosage without a loss of efficacy and prevent dopaminergic side-effects from becoming treatment limiting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.11.038DOI Listing

Publication Analysis

Top Keywords

dopamine agonist
24
enhances anti-parkinsonian
12
anti-parkinsonian activity
12
motor disability
12
adenosine a2a
8
a2a receptor
8
receptor antagonist
8
antagonist istradefylline
8
istradefylline enhances
8
mptp-treated common
8

Similar Publications

The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics.

Expert Opin Drug Discov

January 2025

Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.

Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.

Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism.

Int J Mol Sci

January 2025

Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, 16132 Genova, Italy.

Acromegaly is a rare endocrine disorder caused by excessive growth hormone (GH) production, due, in the vast majority of cases, to the presence of a GH-secreting pituitary tumour. The chronic elevation of GH and the resulting high circulating levels of insulin-like growth factor-1 (IGF-1) cause the characteristic tissue overgrowth and a number of associated comorbidities, including several metabolic changes, such as glucose intolerance and overt diabetes mellitus (DM). Elevated GH concentrations directly attenuate insulin signalling and stimulate lipolysis, decreasing glucose uptake in peripheral tissues, thus leading to the development of impaired glucose tolerance and DM.

View Article and Find Full Text PDF

: Myoclonus is already associated with a wide variety of drugs and systemic conditions. As new components are discovered, more drugs are suspected of causing this disabling abnormal involuntary movement. This systematic review aims to assess the medications associated with drug-induced myoclonus (DIM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!