Objective: As investigations into nonsurgical treatment for atherosclerosis expand, the measurement of plaque regression and progression has become an important end point to evaluate. Measurements of three-dimensional (3D) plaque volume are more reliable and sensitive to change than are traditional estimates of stenosis severity or cross-sectional area. 3D ultrasound (3D US) imaging may allow monitoring of plaque volume changes but has not been used routinely due to the cumbersome motorized units required to drive transducers. We investigated the variability, reliability, and the least amount of change detectable by 1D plaque measures, as well as 2D and 3D measures of plaque morphometry, that can be applied in a clinical environment.
Methods: 3D US imaging was obtained in 10 patients with carotid stenosis. The lumen and outer wall boundaries were outlined in serial cross-sectional images 1 mm apart. Three observers manually segmented vessel wall volumes (VWVs), and the segmentation was repeated again 4 weeks later. This allowed measurement of interobserver and intraobserver variability of 6 pairs of observations. We measured Bland-Altman statistics, intraclass correlation coefficients, coefficient of variability, and the minimum detectable plaque change for each morphometric measure.
Results: The mean VWV of carotid lesions in the study was 1276.8 mm(3) (range, 620.6-1956.3 mm(3)). Bland-Altman plots demonstrated low interobserver and intraobserver variability. The interobserver variability of volume measurements as a function of mean volume was 14.8% and interobserver variability was 8.9%. Reliability was 87% as quantified by the interclass correlation and was 95% by the intraclass correlation. The least detectable change in VWV was 12.9% for interobserver variability and 4.5% for intraobserver variability for the three observers.
Conclusions: Carotid plaque diameter measurements from B-mode images have high variability. Plaque burden, as estimated by VWV, can be measured reliably with a 3D US technique using a clinical scanner. The volumetric change, with 95% confidence, that must be observed to establish that a plaque has undergone growth or regression is ∼12.9% for different observers and 4.5% for the same observer performing the follow-up study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvs.2014.10.003 | DOI Listing |
Comput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFJ Clin Med
January 2025
Derby Fertility Unit, Royal Derby Hospital, University Hospital of Derby and Burton, Derby DE22 3NE, UK.
: The aim of this study is to assess the inter- and intra-observer reproducibility of the identification of direct and indirect ultrasonographic features of adenomyosis as defined by the revised Morphological Uterus Sonographic Assessment (MUSA) consensus (2022). : A cohort of 74 women, aged 18 to 45, were recruited from the recurrent miscarriage and general gynaecology clinic at a university-based fertility centre. All the participants underwent 2D and 3D transvaginal Ultrasound scan (TVS) examination in the late follicular and early luteal phase.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
The rapid development of artificial intelligence (AI) is impacting the medical sector by offering new possibilities for faster and more accurate diagnoses. Symptom checker apps show potential for supporting patient decision-making in this regard. Whether the AI-based decision-making of symptom checker apps shows better performance in diagnostic accuracy and urgency assessment compared to physicians remains unclear.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
3D-Lab, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
Purpose: Currently, no gold standard exists for 3D analysis of virtually planned surgery accuracy postoperatively. The aim of this study was to present a new, validated and standardised methodology for 3D postoperative assessment of surgical accuracy in patients undergoing 3D virtually planned and guided corrective osteotomies.
Methods: All patients who underwent 3D planned corrective osteotomy in 2021-2022 at our center with a postoperative CT were included.
Eur J Trauma Emerg Surg
January 2025
Department of Orthopaedic Surgery, Hyogo Prefectural Nishinomiya Hospital, 13-9, Rokutanji, Nishinomiya, 662-0918, Japan.
Purpose: Evaluating sacral fractures is crucial in fragility fractures of the pelvis. Dual-energy CT (DECT) is considered useful for diagnosing unclear fractures on single-energy CT (SECT). This study aims to investigate the effectiveness of DECT in diagnosing sacral fractures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!