Glycosomal membrane proteins and lipids from Leishmania mexicana.

Comp Biochem Physiol B Biochem Mol Biol

Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.

Published: April 2015

AI Article Synopsis

  • Glycosomal membrane proteins in Leishmania mexicana are essential for coordinating metabolic activities between the cytosol and glycosomes.
  • An inventory revealed that 70% of proteins were found in a hydrophobic fraction, indicating a strong association with membranes, while 20% were soluble after treatment with Na2CO3.
  • The study identified 14 key polypeptides, primarily integral proteins, with the 50 kDa protein being the most prevalent, and major phospholipids in the membranes included phosphatidyl-ethanolamine and phosphatidyl-choline, suggesting a role in sterol biosynthesis.

Article Abstract

Constituents of the glycosomal membrane from Leishmania mexicana should play a critical role in the coordination of metabolic processes occurring in the cytosol and those compartmentalized within glycosomes. We have made an inventory of glycosomal membrane-associated proteins using approaches specific for enriching both integral and peripheral membrane proteins. Surprisingly, 70% of the proteins were recovered in the hydrophobic fraction of membranes solubilized with Triton X-114, while 20% were present in the soluble fraction obtained upon treatment with Na2CO3. 14 major polypeptides, ranging in molecular weight from 65 to 16 kDa, were found to be associated with the membrane, nine of them behaving as integral membrane proteins. Assessment of their topology in the membrane indicated that the polypeptides of 56, 50, 46 and 32 kDa have no domains exposed to the cytosol. The 50 kDa protein is the most abundant one of the glycosomal membrane, where it is peripherically located at the matrix face. The major phospholipids of glycosomal membranes are phosphatidyl-ethanolamine, phosphatidyl-choline and phosphatidyl-serine, with smaller proportions of sphingomyelin and phosphatidyl-inositol. The sterols found were of 5-dehydroepisterol, ergosta-5,7,24(24(1))-trien-3β-ol, and also their precursors, consistent with the notion that these organelles are involved in de novo biosynthesis of sterols in trypanosomatids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2014.11.012DOI Listing

Publication Analysis

Top Keywords

glycosomal membrane
12
membrane proteins
12
leishmania mexicana
8
membrane
6
glycosomal
5
proteins
5
proteins lipids
4
lipids leishmania
4
mexicana constituents
4
constituents glycosomal
4

Similar Publications

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Galactokinase and galactose metabolism in Leishmania spp.

Exp Parasitol

December 2024

Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela. Electronic address:

In Leishmania, the nucleotide-sugar UDP-galactose can be synthesized by a salvage pathway, the Isselbacher route, involving phosphorylation of galactose and the action of UDP-sugar pyrophosphorylase. The first enzyme of the pathway, galactokinase, has yet to be studied in this parasite. Here, we report a molecular and biochemical characterization of this enzyme in Leishmania mexicana.

View Article and Find Full Text PDF

Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice.

View Article and Find Full Text PDF

The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist , a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system.

View Article and Find Full Text PDF

Engineering peroxisomal surface display for enhanced biosynthesis in the emerging yeast Kluyveromyces marxianus.

Metab Eng

November 2024

Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA. Electronic address:

The non-conventional yeast Kluyveromyces marxianus is a promising microbial host for industrial biomanufacturing. With the recent development of Cas9-based genome editing systems and other novel synthetic biology tools for K. marxianus, engineering of this yeast has become far more accessible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!