NADPH oxidase 2-dependent oxidative stress, mitochondrial damage and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging rats.

Neuroscience

Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China. Electronic address:

Published: February 2015

AI Article Synopsis

  • Aging is linked to oxidative stress and mitochondrial DNA mutations, with a study using D-galactose in rats revealing increased oxidative stress and mitochondrial damage in the peripheral auditory system.
  • The current research focused on how these effects manifest in the central auditory system, finding elevated levels of H2O2 and NADPH oxidase 2 (NOX2) along with mitochondrial damage in the ventral cochlear nucleus of the D-gal-treated rats.
  • The results indicate that NOX2-dependent oxidative stress leads to mitochondrial injury and activates apoptosis, providing new insights into presbycusis (age-related hearing loss).

Article Abstract

Aging has been associated with oxidative stress and the accumulation of mitochondrial DNA (mtDNA) mutation. The previous study has established a mimetic rat model of aging using D-galactose (D-gal) and revealed that chronic injection of D-gal can increase NADPH oxidase (NOX)-dependent oxidative stress, mitochondrial damage and apoptosis in the peripheral auditory system. However, the effects of NOXs in the central auditory system (CAS) were still obscure. The current study was designed to investigate potential causative mechanisms of central presbycusis by using the D-gal-induced aging rats. We found that the levels of H2O2 and the expression of NADPH oxidase 2 (NOX2) and its corresponding subunits P22(phox), P47(phox) and P67(phox) were greatly increased in the ventral cochlear nucleus (VCN) of D-gal-treated rats as compared with controls. And, the levels of a typical biomarker of oxidative stress, 8-hydroxy-2-deoxyguanosine (8-OHdG), and the accumulation of mtDNA common deletion (CD) were also increased in the VCN of D-gal-treated rats as compared with controls. Moreover, the damage of mitochondrial ultrastructure, a decline in ATP levels, the loss of mitochondrial membrane potential (MMP), an increase in the amount of cytochrome c (cyt c) translocated to the cytoplasm and caspase-3 activation were observed in the VCN induced by D-gal. In addition, we also found that the terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling (TUNEL)-positive cells in the VCN were increased in D-gal-treated rats. Taken together, these findings suggest that NOX2-dependent oxidative stress may contribute to mitochondrial damage and activate a caspase-3-dependent apoptosis pathway in the CAS during aging. This study also provides new insights into the development of presbycusis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2014.11.061DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
nadph oxidase
12
mitochondrial damage
12
d-gal-treated rats
12
stress mitochondrial
8
damage apoptosis
8
ventral cochlear
8
cochlear nucleus
8
aging rats
8
auditory system
8

Similar Publications

Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.

Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.

View Article and Find Full Text PDF

Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.

View Article and Find Full Text PDF

We aimed to explore the role of ikarugamycin (IKA) in breast cancer, its connection with hexokinase-2 (HK-2) repression, and tissue factor (TF). This study sought to extend the role of HK-2 as a TF activator in a comprehensive analysis of these interactions from the enzyme, gene, and protein levels. The investigation was performed with MDA-MB-231 and MCF-7 breast cancer lines.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Purpose: Urinary cytokine changes may serve as biomarkers to assess treatment outcomes for interstitial cystitis/bladder pain syndrome (IC/BPS). This study analyzed the changes in urinary cytokines following various bladder therapies and explored their clinical significance in therapeutic mechanisms.

Methods: A total of 122 patients with IC/BPS treated with platelet-rich plasma (PRP), botulinum toxin-A (BoTN-A), hyaluronic acid (HA), or low-energy shock wave (LESW) were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!