The cytochrome P450 mixed function oxidase enzymes play a major role in the metabolism of important endogenous substrates as well as in the biotransformation of xenobiotics. The liver P450 system is the most active in metabolism of exogenous substrates. This review briefly describes the liver P450 (CYP) mixed function oxidase system with respect to its enzymatic components and functions. Electron transfer by the NADPH-P450 oxidoreductase is required for reduction of the heme of P450, necessary for binding of molecular oxygen. Binding of substrates to P450 produce substrate binding spectra. The P450 catalytic cycle is complex and rate-limiting steps are not clear. Many types of chemical reactions can be catalyzed by P450 enzymes, making this family among the most diverse catalysts known. There are multiple forms of P450s arranged into families based on structural homology. The major drug metabolizing CYPs are discussed with respect to typical substrates, inducers and inhibitors and their polymorphic forms. The composition of CYPs in humans varies considerably among individuals because of sex and age differences, the influence of diet, liver disease, presence of potential inducers and/or inhibitors. Because of such factors and CYP polymorphisms, and overlapping drug specificity, there is a large variability in the content and composition of P450 enzymes among individuals. This can result in large variations in drug metabolism by humans and often can contribute to drug-drug interactions and adverse drug reactions. Because of many of the above factors, especially CYP polymorphisms, there has been much interest in personalized medicine especially with respect to which CYPs and which of their polymorphic forms are present in order to attempt to determine what drug therapy and what dosage would reflect the best therapeutic strategy in treating individual patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309856 | PMC |
http://dx.doi.org/10.1016/j.redox.2014.11.008 | DOI Listing |
J Med Internet Res
January 2025
ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Background: Tinnitus is a major health issue, but currently no tinnitus elimination treatments exist for chronic subjective tinnitus. Acoustic therapy, especially personalized acoustic therapy, plays an increasingly important role in tinnitus treatment. With the application of smartphones, personalized acoustic stimulation combined with smartphone apps will be more conducive to the individualized treatment and management of patients with tinnitus.
View Article and Find Full Text PDFPLOS Digit Health
January 2025
Johnson & Johnson Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium.
While the incidence of Human Immunodeficiency Virus (HIV) infection is decreasing in most age groups worldwide, it is rising among adolescents and young adults, who also face a higher rate of HIV-related deaths. This tech-savvy demographic may benefit from an online patient portal designed to enhance patient activation-empowering them to manage their health independently. However, the effectiveness of such digital health interventions on young HIV patients in Kenya remains uncertain.
View Article and Find Full Text PDFJ Pediatr Orthop
January 2025
Jackie and Gene Autry Orthopedic Center, Children's Hospital Los Angeles, Los Angeles, CA.
Background: Orthopaedic surgical intervention in children with Charcot-Marie-Tooth (CMT) often includes triceps surae lengthening (TSL) and foot procedures to address instability and pain due to equinus and cavovarus deformities. These surgeries may unmask underlying weakness in this progressive disease causing increased calcaneal pitch and excessive dorsiflexion in terminal stance leading to crouch. The purpose of this study was to evaluate changes in ankle function during gait following TSL surgery in children with CMT.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.
View Article and Find Full Text PDFSci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!