Near-infrared spectroscopy (NIRS) is a powerful non-destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in line in industries, in vivo with biomedical applications, or in field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentration. Instead of spectral pre-processing, which is commonly used by NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, i.e., coupling polarized light with NIR spectrometry, to free spectra from scattering effect. This should allow us to retrieve linear and steady conditions for spectral analysis. When tested in visible-NIR (Vis-NIR) range (400-800 nm) on model media, mixtures of scattering and absorbing particles, the setup provided significant improvements in absorber concentration estimation precision as well as in the quality and robustness of the calibration model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/14-07539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!