Polysaccharide-based aerogel microspheres for oral drug delivery.

Carbohydr Polym

Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorferstraße 38, D-21073 Hamburg, Germany. Electronic address:

Published: March 2015

AI Article Synopsis

  • The study explored polysaccharide-based aerogels in microsphere form as carriers for poorly soluble drugs, emphasizing their biocompatibility and drug loading capabilities.
  • Aerogel microspheres made from starch, pectin, and alginate were loaded with ketoprofen and benzoic acid using a supercritical CO2 method, with loading amounts varying based on the matrix composition.
  • Drug release behavior was analyzed in different pH settings, revealing that pectin and alginate showed controlled release fitting a specific model, while starch-based microspheres demonstrated a dissolution-driven release with varying rates for each drug.

Article Abstract

Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2014.10.045DOI Listing

Publication Analysis

Top Keywords

aerogel microspheres
20
benzoic acid
12
drug loading
8
pectin alginate
8
ketoprofen benzoic
8
starch aerogel
8
microspheres
7
drug
7
aerogel
6
release
6

Similar Publications

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy metal wastewater is highly toxic even at low levels, posing risks to the environment and human health, necessitating the development of effective treatment methods.
  • MnFeO-loaded bamboo pulp carbon-based aerogel (MCA) is created through freeze-drying and carbonization, and its properties are analyzed using various scientific techniques.
  • MCA shows strong adsorption capabilities for heavy metals Pb, Cu, and Cd, with maximum capacities of 74.38, 84.21, and 73.63 mg/g, indicating its potential for use in wastewater purification.
View Article and Find Full Text PDF

3D Printing of Graphene Aerogel Microspheres to Architect High-Performance Electrodes for Hydrogen Evolution Reaction.

Small

December 2024

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.

The hydrogen evolution reaction (HER) efficiency is highly dependent on the electrocatalysts microstructure and the macrostructure of the electrodes. Herein, the graphene aerogel microspheres loaded with well-dispersed ultrafine Ni/Co nanoparticles catalyst is prepared through electro-spraying, in-situ crosslinking, freeze-drying, and pyrolysis, and then is utilized to print the HER electrode via direct ink writing (DIW). The obtained graphene-based aerogel microspheres possess peculiar cabbage-like mesoporous structures which allow ready access of reaction species to active sites, optimal mass transfer, and proton diffusion within the microspheres.

View Article and Find Full Text PDF

The challenges of recovering powdered biochar and its limited adsorption capacity are major obstacles to the application of agricultural waste in dye adsorption. To address these issues, this work fabricates FeO-modified coconut shells biochar (mCSB)/sodium alginate (SA) aerogel beads using an in-situ crosslinking-gelation method and freeze-drying technology for methylene blue (MB) removal from wastewater. The spherical mCSB/SA aerogel beads with good magnetic properties (12.

View Article and Find Full Text PDF
Article Synopsis
  • Quantum dots (QDs) are used for a novel nitrogen dioxide (NO) fluorescence gas sensor, which combines QDs with silica microspheres and silica aerogel to enhance performance.
  • The composite nanofilm improves gas diffusion and sensitivity, showing a strong linear response to NO gas within a range of 0-10 ppm, and achieves an ultra-low detection limit of 0.096 ppm.
  • The sensor maintains stable fluorescence over 60 days, making it an effective solution for environmental monitoring and other applications requiring precise NO detection.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!