Three amphiphilic poly(N-acryloyl-L-amino acid) grafted celluloses were prepared by RAFT polymerization of N-acryloyl-L-amino acid, where amino acid is alanine, proline or glutamic acid, onto cellulose backbones. The chemical structure and solution properties of the brush copolymers were characterized with FTIR, NMR and wide angle X-ray diffraction (WAXD). The thermal stability of the brush copolymers was estimated by thermal gravimetric analysis (TGA). Circular dichroism (CD) and specific rotation measurements confirmed that these grafted celluloses had characteristic chiroptical properties. The amphiphilic brush copolymers self-assembled into micelles in the aqueous solution as confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses. The micellar aggregates showed a tunable pH-responsive property and disaggregated to form unimolecular micelles at higher pH in diluted solutions. The brush copolymers have potential applications in controlled drug release and high-performance liquid chromatography, and so forth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2014.09.074 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China.
Interventional catheters have been widely applied in diagnostics, therapeutics, and other biomedical areas. The complications caused by catheter-related bacterial infection, venous thrombosis, and vascular abrasion have become the main reasons for the failure of interventional therapy. In this study, polyacrylamide/poly(acrylic acid) lubricating copolymer brushes were constructed on the surface of catheters and efficiently resisted the adhesion of blood components and bacteria through hydration and electrostatic repulsion effects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States.
Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Janus graft copolymers, which combine the characteristics of block and graft copolymers, have been used in the fields of reaction catalysis, surface modification, and drug delivery, but their applications in lithium batteries have rarely been reported. Herein, Janus graft copolymers with polyethylene glycol (PEG) and polystyrene (PS) side chains are synthesized by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) methods and doped with lithium salts to fabricate Janus bottlebrush polymer electrolytes (PEG-J-PS). The PEG side chains of the brush polymers impart good ion-conducting properties to the electrolytes, while the PS side chains improve the mechanical strength and thermal and chemical stability of the electrolytes.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
Efficient synthesis of cyclic polymers remains a frontier challenge. We report here that macromolecular transesterification during a pseudoblock copolymerization process can be utilized for such a purpose. Organobase-catalyzed ring-opening alternating copolymerization of 3,4-dihydrocoumarin and epoxide is conducted with four-armed poly(ethylene oxide) (PEO) as a macroinitiator.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!