Norepinephrine acting via β-adrenergic receptors (β-ARs) plays an important role in hippocampal plasticity including the subiculum which is the principal target of CA1 pyramidal cells and which controls information transfer from the hippocampus to other brain regions including the neighboring presubiculum and the entorhinal cortex (EC). Subicular pyramidal cells are classified as regular- (RS) and burst-spiking (BS) cells. Activation of β-ARs at CA1-subiculum synapses induces long-term potentiation (LTP) in burst- but not in RS cells (Wójtowicz et al., 2010). To elucidate seizure-associated disturbances in the norepinephrine-dependent modulation of hippocampal output, we investigated the functional consequences of the β-AR-dependent synaptic plasticity at CA1-subiculum synapses for the transfer of hippocampal output to the parahippocampal region in the pilocarpine model of temporal lobe epilepsy. Using single-cell and multi-channel field recordings in slices, we studied β-AR-mediated changes in the functional connectivity between CA1, the subiculum and its target-structures. We confirm that application of the β-adrenergic agonist isoproterenol induces LTP in subicular BS- but not RS cells. Due to the distinct spatial distribution of RS- and BS cells in the proximo-to-distal axis of the subiculum, in field recordings, LTP was significantly stronger in the distal than in the proximal subiculum. In pilocarpine-treated animals, β-AR-mediated LTP was strongly reduced in the distal subiculum. The attenuated LTP was associated with a disturbed polysynaptic transmission from the CA1, via the subiculum to the presubiculum, but with a preserved transmission to the medial EC. Our findings suggest that synaptic plasticity may influence target-related information flow and that such regulation is disturbed in pilocarpine-treated epileptic rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2014.11.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!