Background: Preservation of donor hearts for transplantation has traditionally been performed with the use of static cold storage. We have developed and tested a novel gravity-powered system of cold crystalloid perfusion for prolonged donor heart preservation.
Methods: Greyhounds were anesthetized; their hearts were arrested with cold cardioplegic solution and excised. Hearts were allocated to 12 hours of perfusion preservation (n = 6) or cold storage in ice (n = 5). Non-preserved hearts (n = 5) served as a normal reference group. Perfusion hearts were perfused (20 mL/min, 8-12°C) with a novel oxygenated nutrient-containing preservation solution. After preservation, the recovery of the hearts was assessed in a blood-perfused working heart rig over 2 hours in terms of function, blood lactate level, myocardial adenosine triphosphate, and histology.
Results: After 2 hours of reperfusion, in comparison with cold storage hearts, perfused heart function curves showed superior recovery of cardiac output (P = .001), power (P = .001), and efficiency (0.046 ± 0.01 vs 0.004 ± 0.003 joules/mL O2, P = .034). Myocardial adenosine triphosphate content (mmol/mg protein) was reduced significantly from the normal level of 26.5 (15.9, 55.8) to 5.08 (0.50, 10.4) (P = .049) in cold storage hearts but not in perfused hearts. Over a period of 2 hours, lactate levels in the blood perfusate were significantly lower in the perfusion group than in the cold storage group (P < .05).
Conclusions: Continuous hypothermic crystalloid perfusion provides myocardial preservation superior to cold storage for long-term heart preservation, with potential applicability to marginal and donation after circulatory death hearts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.transproceed.2014.09.149 | DOI Listing |
FEMS Microbiol Ecol
January 2025
NIAB East Malling, New Road, Kent, ME19 6BJ, UK.
Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts.
View Article and Find Full Text PDFCryobiology
January 2025
College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:
Clin Lung Cancer
December 2024
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. Electronic address:
Background: Small cell lung cancer (SCLC) is initially highly sensitive to chemotherapy, which often leads to significant tumor reduction. However, the majority of patients eventually develop resistance, and the disease is further complicated by its "cold" tumor microenvironment, characterized by low tumor immunogenicity and limited CD8+ T cell infiltration. These factors contribute to the poor response to immunotherapy in many cases of extensive-stage SCLC (ES-SCLC).
View Article and Find Full Text PDFJ Biomed Opt
January 2025
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: Accurate values of skin optical properties are essential for developing reliable computational models and optimizing optical imaging systems. However, published values show a large variability due to a variety of factors, including differences in sample collection, preparation, experimental methodology, and analysis.
Aim: We aim to explore the influence of storage conditions on the optical properties of the excised skin from 400 to 1100 nm.
Free Neuropathol
January 2024
Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Cryopreservation, the preservation of tissues at subzero temperatures, is a mainstay of brain banking that allows for the storage of brain tissue without the use of chemical fixatives. This is particularly important for molecular studies that are incompatible with tissue fixation. However, brain tissue is vulnerable to various forms of damage during the cryopreservation process, in particular due to the phase transition of water from a liquid to a solid state with the formation of ice crystals, which can disrupt cellular morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!