Mouse ERG K(+) channel clones reveal differences in protein trafficking and function.

J Am Heart Assoc

Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI (E.C.L., B.M.M., E.L., S.P.C., C.L.A., J.W.K., J.C.M., S.Y.B., C.T.J.).

Published: December 2014

Background: The mouse ether-a-go-go-related gene 1a (mERG1a, mKCNH2) encodes mERG K(+) channels in mouse cardiomyocytes. The mERG channels and their human analogue, hERG channels, conduct IKr. Mutations in hERG channels reduce IKr to cause congenital long-QT syndrome type 2, mostly by decreasing surface membrane expression of trafficking-deficient channels. Three cDNA sequences were originally reported for mERG channels that differ by 1 to 4 amino acid residues (mERG-London, mERG-Waterston, and mERG-Nie). We characterized these mERG channels to test the postulation that they would differ in their protein trafficking and biophysical function, based on previous findings in long-QT syndrome type 2.

Methods And Results: The 3 mERG and hERG channels were expressed in HEK293 cells and neonatal mouse cardiomyocytes and were studied using Western blot and whole-cell patch clamp. We then compared our findings with the recent sequencing results in the Welcome Trust Sanger Institute Mouse Genomes Project (WTSIMGP).

Conclusions: First, the mERG-London channel with amino acid substitutions in regions of highly ordered structure is trafficking deficient and undergoes temperature-dependent and pharmacological correction of its trafficking deficiency. Second, the voltage dependence of channel gating would be different for the 3 mERG channels. Third, compared with the WTSIMGP data set, the mERG-Nie clone is likely to represent the wild-type mouse sequence and physiology. Fourth, the WTSIMGP analysis suggests that substrain-specific sequence differences in mERG are a common finding in mice. These findings with mERG channels support previous findings with hERG channel structure-function analyses in long-QT syndrome type 2, in which sequence changes in regions of highly ordered structure are likely to result in abnormal protein trafficking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338741PMC
http://dx.doi.org/10.1161/JAHA.114.001491DOI Listing

Publication Analysis

Top Keywords

merg channels
24
protein trafficking
12
herg channels
12
long-qt syndrome
12
syndrome type
12
channels
10
merg
8
mouse cardiomyocytes
8
amino acid
8
previous findings
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!