Theoretical evaluation of wall teichoic acids in the cavitation-mediated pores formation in Gram-positive bacteria subjected to an electric field.

Biochim Biophys Acta

School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.

Published: April 2015

Background: Electroporation is a method of choice to transform living cells. The ability of electroporation to transfer small or large chemicals across the lipid bilayer membrane of eukaryotic cells or Gram-negative bacteria relies on the formation of transient pores across the membrane. To exist, these pores rely on an insulator (the bilayer membrane) and the presence of a potential difference on either side of the membrane mediated by an external electric field. In Gram-positive bacteria, however, the wall is not an insulator but pores can still form when an electric field is applied. Past works have shown that the electrostatic charge of teichoic acids, a major wall component; sensitizes the wall to pore formation when an external electric field is applied. These results suggest that teichoic acids mediate the formation of defects in the wall of Gram-positive bacteria.

Methods: We model the electrostatic repulsion between teichoic acids embedded in the bacterial wall composed of peptidoglycan when an electric field is applied. The repulsion between teichoic acids gives rise to a stress pressure that is able to rupture the wall when a threshold value has been reached. The size of such small defects can diverge leading to the formation of pores.

Results: It is demonstrated herein that for a bonding energy of about ~1-10 k(B)T between peptidoglycan monomers an intra-wall pressure of about ~5-120 k(B)T/nm(3) generates spherical defects of radius ~0.1-1 nm diverging in size to create pores.

Conclusion: The electrostatic cavitation of the bacterial wall theory has the potential to highlight the role of teichoic acids in the formation pores, providing a new step in the understanding of electroporation in Gram-positive bacteria without requiring the use of an insulator.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2014.12.004DOI Listing

Publication Analysis

Top Keywords

teichoic acids
24
electric field
20
gram-positive bacteria
12
field applied
12
wall
8
bilayer membrane
8
external electric
8
repulsion teichoic
8
bacterial wall
8
teichoic
6

Similar Publications

Lipoteichoic acid (LTA), an organic acid of Gram-positive bacteria, is closely related to mastitis in dairy cows. This study evaluates the effect of LTA-induced endoplasmic reticulum stress (ER stress) in vitro using MAC-T (mammary epithelial cells) and in dairy cows with mastitis. LTA stimulation significantly increases ER stress and apoptosis-related factors in MAC-T.

View Article and Find Full Text PDF

The Effect of Clostridium butyricum-Derived Lipoteichoic Acid on Lipopolysaccharide-Stimulated Porcine Intestinal Epithelial Cells.

Vet Med Sci

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Background: Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear.

Objective: This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2).

View Article and Find Full Text PDF

Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation.

View Article and Find Full Text PDF

Bacteriophage Receptor Recognition and Nucleic Acid Transfer.

Subcell Biochem

December 2024

Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

Correct host cell recognition is important in the replication cycle for any virus, including bacterial viruses. This essential step should occur before the bacteriophage commits to transferring its genomic material into the target bacterium. In this chapter, we will discuss the mechanisms and proteins bacteriophages use for receptor recognition (just before full commitment to infection) and nucleic acid injection, which occurs just after commitment.

View Article and Find Full Text PDF

Muramyl dipeptide potentiates lipoteichoic acid-induced nitric oxide production via TLR2/NOD2/PAFR signaling pathways.

Front Immunol

December 2024

Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!