The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.

FEBS Lett

Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA; Department of Nutrition and Food Sciences, The University of Rhode Island, Kingston, RI, USA. Electronic address:

Published: January 2015

AI Article Synopsis

  • The Min system of proteins, which includes MinC, MinD, and MinE, is crucial for proper cell division in E. coli by ensuring the division septum is placed at midcell.
  • MinC interacts with MinD, a membrane-associated ATPase, to create a polar gradient, while MinE helps regulate this process by promoting ATP hydrolysis, leading to MinD's release from the membrane.
  • Research indicates that MinD can form polymers with MinC and ATP independently of phospholipids, and MinE plays a role in breaking down these polymer structures; however, certain mutant forms of MinD can't polymerize with MinC.

Article Abstract

The Min system of proteins, consisting of MinC, MinD and MinE, is essential for normal cell division in Escherichia coli. MinC forms a polar gradient to restrict placement of the division septum to midcell. MinC localization occurs through a direct interaction with MinD, a membrane-associating Par-like ATPase. MinE stimulates ATP hydrolysis by MinD, thereby releasing MinD from the membrane. Here, we show that MinD forms polymers with MinC and ATP without the addition of phospholipids. The topological regulator MinE induces disassembly of MinCD polymers. Two MinD mutant proteins, MinD(K11A) and MinD(ΔMTS15), are unable to form polymers with MinC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2014.11.047DOI Listing

Publication Analysis

Top Keywords

cell division
8
form polymers
8
polymers minc
8
mind
7
minc
6
bacterial cell
4
division regulators
4
regulators mind
4
mind minc
4
minc form
4

Similar Publications

Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.

View Article and Find Full Text PDF

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!