Behavioral in-effectiveness of high frequency electromagnetic field in mice.

Physiol Behav

Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur (MS) 440 033, India.

Published: March 2015

The present investigation was carried out with an objective to study the influence of high frequency electromagnetic field (HF-EMF) on anxiety, obsessive compulsive disorder (OCD) and depression-like behavior. For exposure to HF-EMF, non-magnetic material was used to fabricate the housing. Mice were exposed to HF-EMF (2.45GHz), 60min/day for 7 or 30 or 60 or 90 or 120days. The exposure was carried out by switching-on inbuilt class-I BLUETOOTH device that operates on 2.45GHz frequency in file transfer mode at a peak density of 100mW. Mice were subjected to the assessment of anxiety, OCD and depression-like behavior for 7 or 30 or 60 or 90 or 120days of exposure. The anxiety-like behavior was assessed by elevated plus maze, open field test and social interaction test. OCD-like behavior was assessed by marble burying behavior, whereas depression-like behavior was assessed by forced swim test and tail suspension test. The present experiment demonstrates that up to 120days of exposure to HF-EMF does not produce anxiety, OCD and depression-like behavior in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2014.12.019DOI Listing

Publication Analysis

Top Keywords

depression-like behavior
16
ocd depression-like
12
120days exposure
12
behavior assessed
12
high frequency
8
frequency electromagnetic
8
electromagnetic field
8
exposure hf-emf
8
anxiety ocd
8
behavior
7

Similar Publications

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression.

View Article and Find Full Text PDF

Effects of Protein on Depression-like Behavior and Gut Microbiota in Stressed Juvenile Mice.

Foods

January 2025

Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand.

protein (Lep) exhibits anti-inflammatory effects, but its antidepressant activity is unknown. This study used a 44-day chronic unpredictable mild stress (CUMS) model to determine whether Lep has a beneficial effect through the gut-brain axis in 3-week-old male C57BL/6 mice. Gavaging with Lep solution alleviated the depression-like behavior and anxiety symptoms in CUMS growing mice.

View Article and Find Full Text PDF

Chronic stress (CS) is a debilitating condition that negatively affects body and brain. In mice, CS effects range from changes in behaviour and brain microstructure down to the level of gene expression. These effects are partly mediated by sex and sex steroid hormones, which in turn are affected by the palmitoyl acyltransferase ZDHHC7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!