An evaluation on different origins of natural organic matters using various anodes by electrocoagulation.

Chemosphere

Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Laboratory of Green Chemistry, 50130 Mikkeli, Finland.

Published: April 2015

AI Article Synopsis

  • The study investigated the effectiveness of electrocoagulation (EC) using different electrodes (aluminum, iron, hybrid) on removing natural organic matter (NOM) from various water sources (commercial, terrestrial, natural).
  • Results showed that the hybrid electrode achieved the lowest dissolved organic carbon (DOC) concentration of 5.05 mg L(-1) and a high UV-abs-254 removal efficiency of 92.4%.
  • The EC process was effective across all NOM sources, with zeta potential and floc size analyzed to understand the destabilization and treatment efficiency, leading to significant color and DOC reductions.

Article Abstract

In this investigation, natural organic matters (NOM) of different origins (commercial, terrestrial and natural water) were treated by electrocoagulation (EC) process using aluminum, iron and hybrid electrodes. Electrode type effect on removal efficiency was observed for each NOM (commercial, terrestrial, and natural). The results were presented as dissolved organic carbon (DOC) (mg L(-1)) and UV/VIS absorbance (cm(-1)). The specific UV absorbance (SUVA) was determined before and after treatment of water. The lowest effluent concentration was obtained as 5.05 mg L(-1) with hybrid electrode for natural NOM source at its original pH 7.3. In addition, among the metal types, the best UV-abs-254 removal efficiency was obtained as 92.4% with 0.0312 cm(-1) by hybrid electrode at the end of the process. The color removal efficiency of water occurred successfully by Al and hybrid electrodes. Aquatic NOM source was the most resistant to EC treatment with DOC reduction of 71.1%, 59.8%, and 68.6% for Al, Fe and hybrid electrodes, respectively. Zeta potential and floc size of colloids were observed during the process for the determination of destabilization level of natural organic matters in EC process. Fast coagulation or flocculation and incipient instability were formed during electrolysis time for Al and Fe electrode, respectively. SUVA value was reduced to below 2 for three NOM sources studied. The EC process was shown to be a viable for different NOM sources with various metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2014.11.063DOI Listing

Publication Analysis

Top Keywords

natural organic
12
organic matters
12
hybrid electrodes
12
removal efficiency
12
commercial terrestrial
8
terrestrial natural
8
hybrid electrode
8
nom source
8
nom sources
8
natural
6

Similar Publications

Benchmark of Density Functional Theory in the Prediction of C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation.

J Chem Theory Comput

January 2025

Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.

Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF

Karst caves, formed from the dissolution of soluble rocks, are characterized by the absence of photosynthetic activity and low levels of organic matter. Organisms evolve under these particular conditions, which causes high levels of endemic biodiversity in both macroorganism and microbes. Recent research has highlighted the presence of testate amoebae (Arcellinida) group in cave environments.

View Article and Find Full Text PDF

Two novel isostructural anionic lanthanide metal-organic frameworks, (MeNH)[Ln(HTCBPE-F)·(HCOO)·DMF]·4.5DMF·2HO (Eu-MOF and Dy-MOF), based on tetraphenylethylene carboxylate ligands were successfully constructed and characterized. These two MOFs possess porous structures and water stabilities with uncoordinated carboxylate groups and dimethyl ammonium cations, which allow for high proton conductivities (5.

View Article and Find Full Text PDF

Impact of cerium doping on the peroxidase-like activity of metal-organic frameworks.

Dalton Trans

January 2025

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.

Hydrogen peroxide, phenols, amines, aldehydes, and other substances can easily damage intracellular biomacromolecules. Although natural peroxidases can convert these harmful substances into benign ones, the high costs, poor stabilities, and stringent application conditions associated with these enzymes necessitate the exploration of artificial mimics. In this study, Ce-doped MIL-101(Fe)-NH and MIL-101(Fe)-NO were synthesized with varying compositions a solvothermal method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!