Filamentous black yeasts from the genus Exophiala are ubiquitous, opportunistic pathogens causing both superficial and systemic mycoses in warm- and cold-blooded animals. Infections by black yeasts have been reported relatively frequently in a variety of captive and farmed freshwater and marine fishes. In November 2012, moribund and recently dead, farm-raised Atlantic Halibut Hippoglossus hippoglossus were necropsied to determine the cause of death. Histopathology revealed that three of seven fish were affected by a combination of an ascending trans-ductual granulomatous mycotic nephritis, necrotizing histiocytic encephalitis, and in one fish the addition of a fibrogranulomatous submucosal branchitis. Microbial cultures of kidney using selective mycotic media revealed pure growth of a black-pigmenting septated agent. Application of molecular and phenotypic taxonomy methodologies determined that all three isolates were genetically consistent with Exophiala angulospora. This is the first report of E. angulospora as the causal agent of systemic mycosis in Atlantic Halibut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08997659.2014.953266 | DOI Listing |
J Fish Biol
January 2025
Polar branch of the Russian Federal Research Institute of Fisheries and Oceanography ("PINRO" named after N.M. Knipovich), Murmansk, Russia.
More than 27,000 stomachs from 70 species of fish were collected from the Barents Sea in 2015. Quantitative stomach content expressed relative to the body weight of the predator fish (g g as %) varied by four to five orders of magnitude for six species with the largest sample size (Atlantic cod Gadus morhua, haddock Melanogrammus aeglefinus, Greenland halibut Reinhardtius hippoglossoides, long rough dab Hippoglossoides platessoides, polar cod Boreogadus saida, and Atlantic capelin Mallotus villosus). The quantitative stomach contents of individual fish followed a common and strict statistical relationship for predator species or groups of species (by families), and for prey categories across predator species.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University, St John's, Newfoundland and Labrador, Canada.
Marine biodiversity loss is a pressing global issue, intensified by human activities and climate change. Complementary to marine protected areas (MPAs), Other Effective Area-Based Conservation Measures (OECMs) have emerged as a key tool to mitigate this loss by providing long-term biodiversity protection. However, while OECMs primarily target specific taxa, they can also offer indirect biodiversity conservation benefits (BCBs) to a wider range of taxa.
View Article and Find Full Text PDFMar Pollut Bull
October 2023
Ifremer, Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France.
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada. Electronic address:
Winter flounder (Pseudopleuronectes americanus) is a North Atlantic flatfish that inhabits cold-water environments already affected by global warming. Flatfishes are particularly sensitive during their juvenile stage to a phenomenon known as temperature-dependent sex determination (TSD). In this study, we hypothesized that many genes involved in the steroidogenesis pathway are already expressed at the larval stage in winter flounder and that temperature conditions may influence this pathway prior to the juvenile stage, which is usually considered the TSD-sensitive period.
View Article and Find Full Text PDFJ Fish Biol
October 2024
School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
Winter flounder Pseudopleuronectes americanus (Walbaum 1792) are a coastal flatfish species of economic and cultural importance that have dwindled to <15, % of their historic abundance in the southern New England/Mid-Atlantic region of the United States, with evidence indicating near-extirpation of certain local populations. This species exhibits intricate behaviors in spawning and migration that contribute to population complexity and resilience. These behaviors encompass full or partial philopatry to natal estuaries, the generation of multiple pulses of larval delivery, and partial migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!