A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High throughput exome coverage of clinically relevant cardiac genes. | LitMetric

High throughput exome coverage of clinically relevant cardiac genes.

BMC Med Genomics

Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.

Published: December 2014

Background: Given the growing use of whole-exome sequencing (WES) for clinical diagnostics of complex human disorders, we evaluated coverage of clinically relevant cardiac genes on WES and factors influencing uniformity and depth of coverage of exonic regions.

Methods: Two hundred and thirteen human DNA samples were exome sequenced via Illumina HiSeq using different versions of the Agilent SureSelect capture kit. 50 cardiac genes were further analyzed including 31 genes from the American College of Medical Genetics (ACMG) list for reporting of incidental findings and 19 genes associated with congenital heart disease for which clinical testing is available. Gene coordinates were obtained from two databases, CCDS and Known Gene and compared. Read depth for each region was extracted from the exomes and used to assess capture variability between kits for individual genes, and for overall coverage. GC content, gene size, and inter-sample variability were also tested as potential contributors to variability in gene coverage.

Results: All versions of capture kits (designed based on Consensus coding sequence) included only 55% of known genomic regions for the cardiac genes. Although newer versions of each Agilent kit showed improvement in capture of CCDS regions to 99%, only 64% of Known Gene regions were captured even with newer capture kits. There was considerable variability in coverage of the cardiac genes. 10 of the 50 genes including 6 on the ACMG list had less than the optimal coverage of 30X. Within each gene, only 32 of the 50 genes had the majority of their bases covered at an interquartile range ≥30X. Heterogeneity in gene coverage was modestly associated with gene size and significantly associated with GC content.

Conclusions: Despite improvement in overall coverage across the exome with newer capture kit versions and higher sequencing depths, only 50% of known genomic regions of clinical cardiac genes are targeted and individual gene coverage is non-uniform. This may contribute to a bias with greater attribution of disease causation to mutations in well-represented and well-covered genes. Improvements in WES technology are needed before widespread clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272796PMC
http://dx.doi.org/10.1186/s12920-014-0067-8DOI Listing

Publication Analysis

Top Keywords

cardiac genes
24
genes
12
coverage
9
gene
9
coverage clinically
8
clinically relevant
8
relevant cardiac
8
versions agilent
8
capture kit
8
acmg list
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!