Load and distribution of organic matter and nutrients in a separated household wastewater stream.

Environ Technol

a Department of Environmental Sciences , Norwegian University of Life Sciences, Postboks 5003 N-1432 , Aas , Norway.

Published: October 2015

Wastewater from a source-separated sanitation system connected to 24 residential flats was analysed for the content of organic matter and nutrients and other key parameters for microbiological processes used in the treatment and reuse of wastewater. Black water (BW) was the major contributor to the total load of organic matter and nutrients in the wastewater, accounting for 69% of chemical oxygen demand (COD), 83% of total nitrogen (N) and 87% of phosphorus (P). With a low COD/N ratio and high content of free ammonia, treating BW alone is a challenge in traditional biological nitrogen removal approaches. However, its high nitrogen concentration (1.4-1.7 g L(-1)) open up for nutrient reuse as well as for novel, more energy efficient N-removal technologies. Grey water (GW) contained low amounts of nutrients relative to organic matter, and this may limit biological treatment processes under certain conditions. GW contains a higher proportion of soluble, readily degradable organic substances compared with BW, which facilitates simple, decentralized treatment approaches. The concentration of organic matter and nutrients varied considerably between our study and other studies, which could be related to different toilet flushing volumes and water use habits. The daily load per capita, on the other hand, was found to be in line with most of the reported studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2014.997300DOI Listing

Publication Analysis

Top Keywords

organic matter
20
matter nutrients
16
organic
6
matter
5
nutrients
5
load distribution
4
distribution organic
4
nutrients separated
4
separated household
4
wastewater
4

Similar Publications

The effects of PM components on the cardiovascular disease admissions in Shanghai City, China: a multi- region study.

BMC Public Health

December 2024

Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.

Background: The burden of cardiovascular disease (CVD) is severe worldwide. Although many studies have investigated the association of particulate pollution with CVD, the effect of finer particulate pollution components on CVD remains unclear. This study aimed to explore the effect of five PM components ([Formula: see text], sulfate; [Formula: see text], nitrate; [Formula: see text], ammonium; OM, organic matter; BC, carbon black) on CVD admission in Shanghai City, identify the susceptible population, and provide clues for the prevention and control of particulate pollution.

View Article and Find Full Text PDF

Unraveling the drivers of optimal stomatal behavior in global C plants: A carbon isotope perspective.

Sci Total Environ

December 2024

College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

Understanding the drivers of stomatal behavior is critical for modeling terrestrial carbon cycle and water balance. The unified stomatal optimization (USO) model provides a mechanistic linkage between stomatal conductance (g) and photosynthesis (A), with its slope parameter (g) inversely related to intrinsic water use efficiency (iWUE), providing a key proxy to characterize the differences in iWUE and stomatal behavior. While many studies have identified multiple environmental factors influencing g, the potential role of evolutionary history in shaping g remains incompletely understood.

View Article and Find Full Text PDF

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

December 2024

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!