Background: Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure.
Results: Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope.
Conclusions: Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266902 | PMC |
http://dx.doi.org/10.1186/s12867-014-0027-z | DOI Listing |
Trends Mol Med
December 2024
Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 23001, China. Electronic address:
Most patients with Hutchinson-Gilford progeria syndrome (HGPS) succumb to cardiovascular disease. Recent studies by Barettino et al., Cardoso et al.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.
View Article and Find Full Text PDFTher Adv Rare Dis
December 2024
Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India.
Hutchinson-Gilford Progeria syndrome (HGPS) serves as a prominent model for Progeroid syndromes, a group of rare genetic disorders characterized by accelerated aging. This review explores the genetic basis, clinical presentation, and complications of HGPS. HGPS is caused by mutations in the LMNA gene, resulting in the production of a defective structural protein, prelamin A.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!