Although aligned arrays of single-walled carbon nanotubes (SWNTs) have outstanding potential for use in broad classes of advanced semiconductor devices, the relatively large population of metallic SWNTs (m-SWNTs) that results from conventional growth techniques leads to significantly degraded performance. Recently reported methods based on thermocapillary effects that enable removal of m-SWNTs from such arrays offer exceptional levels of efficiency, but the procedures are cumbersome and require multiple processing steps. Here we present a simple, robust alternative that yields pristine arrays of purely semiconducting SWNTs (s-SWNTs) by use of irradiation with an infrared laser. Selective absorption by m-SWNTs coated with a thin organic film initiates nanoscale thermocapillary flows that lead to exposure only of the m-SWNTs. Reactive ion etching eliminates the m-SWNTs without damaging the s-SWNTs; removal of the film completes the purification. Systematic experimental studies and computational modeling of the thermal physics illuminates the essential aspects of this process. Demonstrations include use of arrays of s-SWNTs formed in this manner as semiconducting channel materials in statistically relevant numbers of transistors to achieve both high mobilities (>900 cm2 V(-1) s(-1)) and switching ratios (>10(4)). Statistical analysis indicates that the arrays contain at least 99.8% s-SWNTs and likely significantly higher.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn505566r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!